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Creation of a Monopole in a Spinor Condensate
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We propose a method to create a monopole structure in a multicomponent condensate by applying the
basic methods used to create vortices and solitons experimentally in single-component condensates. We
also show that by using a two-component structure for a monopole, we can avoid many problems related
to the previously suggested three-component monopole. We discuss the observation and dynamics of
such a monopole structure, and note that the dynamics of the two-component monopole differs from the
dynamics of the three-component monopole.
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Introduction.—The experimental realization of spinor
Bose-Einstein condensates [1,2] makes it feasible to extend
the study of topological quantum objects into an entirely
new field of physics. Ordinary single-component conden-
sates have many topologically interesting properties such
as the existence of vortices [3]. But in spinor conden-
sates one can also study phenomena that cannot exist in the
single-component systems. One example is a monopole
structure in a spinor condensate with antiferromagnetic in-
teractions as proposed by Stoof et al. recently [4]. Other
novel possibilities also exist such as Skyrmions [5,6]. With
Bose-Einstein condensates a crucial aspect is not only the
existence and stability of topological structures, but also
the methods for their creation and observation, as well as
their dynamics. In this Letter we address all these aspects
for a monopole structure in an experimentally relevant case
of a multicomponent Bose-Einstein condensate.

A monopole is a topological defect in a vector field. It
is characterized by a unit vector that is radial in respect to
some unique central point (i.e., the “hedgehog” defect). In
spinor condensates the vector quantity could be the local
spin of the condensed atoms [7], but other choices are also
possible [4,8]. Monopoles have been studied theoretically
in two-dimensional condensates [7,8]. Recently some re-
sults for the three-dimensional case (such as density distri-
bution, energy, and dynamics of such a defect) have been
studied by Stoof et al. [4]. They described a monopole
created in an antiferromagnetic spin-1 condensate such as
23Na. The monopole was characterized by a spinor
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where n is the condensate density and the vector m �
6r�r is a radial unit vector and has the spherically sym-
metric hedgehog structure. Stoof et al. demonstrated that
this particular spin texture is a unique consequence of
the unit winding number and minimization of the gradi-
ent energy. The monopole can also be displaced from the
center of the trap without changing their argument. The
spinor in Eq. (1) is nonmagnetized and can be achieved
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from the single-component mean-field ground state, z
T
0 �p

n �010�, with local spin rotations. Consequently, at each
position it resembles the ground state, and thus the absence
of dynamical instabilities which lead to domain formation
[9,10] is ensured.

Two-component monopole.— One is not, however, lim-
ited to the antiferromagnetic texture given in Eq. (1) when
considering monopoles. We can alternatively map the vec-
tor m into an effective two-component system:
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To ensure the stability of this texture against phase separa-
tion [11], the spin-1 condensate must have ferromagnetic
interactions, which makes the 87Rb spinor condensate a
potential candidate. In other words, the preparation of a
monopole is not limited to the antiferromagnetic 23Na sys-
tem as expected before [4], if we accept spinors that do not
have the order-parameter space of the ground state. Also,
the texture in Eq. (2) is not the texture of a spin monopole.
The mapping of a three-dimensional vector into two wave
functions is not unique, but all mappings are related by ro-
tations and/or inversions. Therefore alternative mappings
are possible by representing the radial vector m in a dif-
ferent basis, i.e., m0 � Rm, where R is an operator that
consists of rotations and inversions only. The angular mo-
mentum will point toward the north pole of the used coor-
dinate system.

The static properties of the two-component monopole
are similar to those of a three-component spinor (there
are differences in dynamics, as we shall discuss later).
Because it should also be easier to create experimentally,
we focus on the two-component case. We note that as
the spinor in Eq. (2) is not the mean-field ground state
locally, some relaxation towards the true ground state is to
be expected. But this relaxation can easily be made very
slow and can thus be ignored at time scales of interest [9].

We describe the condensate with a multicomponent
wave function and label the components as cm with the
spin projection quantum number m �m � 0, 61�. The
© 2002 The American Physical Society 090404-1
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relevant mean-field Gross-Pitaevskii (GP) equations are
[12]
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where L � 2
h̄2
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m �a2 2 a0�, and aF is
the s-wave scattering length in the total hyperfine two-atom
F channel. For a cylindrically symmetric trapping poten-
tial we use Vtrap � mv2

r �x2 1 y2��2 1 mv2
z z2�2.

Monopole structure and stability.—To understand and
test our approach for monopole creation we study the
monopole structure by solving Eq. (3) numerically. In or-
der to create the monopole as an initial state of our nu-
merical study we force the texture given in Eq. (2) [or
Eq. (1)] into the order parameter (this should not be con-
fused with the actual proposal for experimental creation of
the monopole, to come later). The imprinted spinor is then
propagated in imaginary time until sufficient convergence
is reached. If the monopole is at the center of the conden-
sate the imprint has to be done only once at the beginning
of the iteration, otherwise the imprint must be repeated in
the course of the iteration to prevent the monopole from
drifting away from the intended location, to a location
with lower energy. In Fig. 1 we show the typical density
distribution of the spin-1 monopole located at the center
of a trap.

By looking at the individual condensate components we
gain relevant insight into the structure of the monopole.
Here c21 has a vortex at z � 0 with a core size that is
a function of z. On the other hand, c0 goes through a
p phase shift as we move from positive to negative z
values; consequently, this component relates to a soliton
in a single-component condensate. The m � 0 component

−6 −3 0 3 6
0

50

100

150

200

250

x/l

n 
l3

FIG. 1. The total density �l �
p

h̄�mv � of the spin-1 con-
densate with 5 3 104 87Rb atoms when y � z � 0.05 (origin
is not present in our discretization scheme). The monopole is at
the center of a spherically symmetric trap with a trap frequency
v � vr � vz � �2p�50 Hz.
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atoms fill the vortex line everywhere else except at the
origin, where the density of the m � 0 component also
vanishes. Therefore the intersection of the vortex line with
the soliton plane gives rise to a monopole core. Thus, if
we can experimentally create a vortex and a soliton in a
two-component system, we can obtain a monopole.

Creation of monopoles.—The separate look into each
spin component of the monopole structure suggests a pos-
sible way to create it. For example, we can prepare a
spinor condensate with 2�3 population at the m � 1 state
and the rest at m � 0 state, e.g., with an rf pulse [13]. A
“blueprint” of the monopole is achieved by creating a vor-
tex into the m � 1 component and a soliton (with p phase
discontinuity) into the m � 0 component, both at the trap
center. The vortex line should lie along the phase discon-
tinuity in the m � 0 wave function. In Fig. 2 we demon-
strate the time evolution of such a mixture in a cigar-shaped
trap in real time, when the soliton and vortex were created
using the phase-imprint method [14]. With other excita-
tions abounding, it is clear that we nevertheless have a
monopole inside the condensate.

In our numerical studies we have used a certain amount
of smoothing to reduce the amount of noise that would be
created if a phase imprint is too abrupt. Smoothing for a
vortex was done by assuming that not only do we have a
phase mask, but also a narrow (on the order of the coher-
ence length) beam that bores a hole through the m � 1
component along the vortex line. For a soliton the p

phase jump was done at the distance of the order of the
coherence length. Without such smoothing our numeri-
cal approach becomes unstable. It is not clear how much

FIG. 2. The time evolution of the total density of a condensate
with 5 3 104 87Rb atoms in a cylindrically symmetric trap with
frequencies v � vr � �2p�250 Hz and vz � �2p�50 Hz. Ini-
tially there is a vortex at the m � 21 component (perpendicu-
lar line) and a soliton at the m � 0 component (horizontal line).
The vortex and the soliton are imprinted at t � 0 and the figures
show the cut of the total density in the y � 0.09 plane. The x
axis is along the horizontal direction.
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this smoothing is required in actual experiments, although
some amount would always be present. To obtain this
combined phase imprint experimentally is probably com-
plicated, but at least the two main ingredients, namely ex-
perimental creation of vortices [15] and solitons [16] have
already been achieved.

Observation of monopoles.—The monopole core has
roughly the size of the healing length, and it is inside the
condensate. Thus its direct observation is difficult. But
the same methods used to observe vortices [15,17] and
vortex rings [18] can be applied to observe monopoles
as well. One should first let the condensate expand and
then image the 3D structure of the different m states using
two orthogonal probe beams. As for separating the dif-
ferent m states, one can use an appropriate Stern-Gerlach
apparatus [9].

We have studied the behavior of a freely expanding
monopole using the time-dependent generalization of the
monopole GP equation in Ref. [4]. This approximation
assumes equal scattering lengths, but at the time scales
of interest the role of differing scattering lengths is,
in fact, negligible. In the limit that a2 � a0 all the
components feel the same spherically symmetric potential
(external potential and the mean-field terms) and are not
sensitive to the phase of the other components. Therefore a
single-component GP equation is sufficient for modeling
the expanding monopole.

In Fig. 3 we show an example of the time evolution of
the ratio of the monopole core size to the system radius
once the trapping potential is turned off. Expansion is
qualitatively similar to vortex expansion in a scalar con-
densate. At short times the monopole core size, j, adjusts
(almost) instantaneously to the local density [19] and one
expects the size of the core to scale as the healing length,
j0 � 1�

p
4pan. If we model the wave function as
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where A is the normalization factor, the monopole grows
faster than the expanding condensate, or more precisely

j0

R
�
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This happens as long as the characteristic time for adjust-
ment of the core size, tad � h̄�nls, is much less than the
expansion time tex � R�cs, where cs is the sound veloc-
ity. The parameters in Fig. 3 imply that in this regime the
condensate can expand by an order of magnitude, and in
the end of this regime the monopole size compared to the
condensate size has greatly increased. At later times the
atoms in the cloud will evolve as free particles and j0�R
will settle to some constant value. We also compared the
results obtained with a single component GP equation (at
small times) against the solution of the multicomponent
GP equations (3) and found that the two approaches give
essentially the same results.
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FIG. 3. Time evolution of the ratio of the monopole core size
Rm to the condensate size Rc . These sizes were determined
from locations where the density was one-half of the maxi-
mum density. Initially we assumed 5 3 104 condensed rubid-
ium atoms in a spherically symmetric trap with a trap frequency
v � �2p�50 Hz.

Monopole dynamics.—The dynamics of a monopole is
quite interesting. As expected, the monopole at the ori-
gin is stable and stationary. A displaced monopole, on the
other hand, behaves differently [20]. The monopole pre-
cesses around the trap center inside the condensate, just
like a displaced vortex line does. It returns to its initial lo-
cation after T � 2p�VP . For a vortex close to the center
the precession frequency VP coincides with the frequency
of the anomalous mode va. For a disk-shaped trap an
analytic result is available [21] and is given by

va � 2
3
2

h̄
mR2 ln

µ
R
j

∂
, (6)

where R is the radius of the system and j is the healing
length. Even though the trap geometry in our example is
nowhere near the disk shape, we expect that Eq. (6) gives
a reasonable order of magnitude estimate. Especially so
since the m � 21 atoms are “squeezed” between lobes of
m � 0 atoms, thus making the disk-shaped approximation
rather justified.

As a test case we take a spherically symmetric trap
with trap frequency v � �2p�50 Hz and a 87Rb conden-
sate with 5 3 104 atoms. Setting R to the Thomas-Fermi
radius of the system and calculating j from the Thomas-
Fermi result at the trap center we get an estimate vT � 35.
This value is fairly close to the value actually seen in our
3D simulation of the monopole dynamics. If the monopole
was displaced by one-fifth of the Thomas-Fermi radius
our numerical result is vT � 38. The above estimate is
surprisingly accurate, in particular, because the precessing
vortex should feel the mean field of the other component.

The dynamical behavior of the three-component
monopole of Eq. (1) is different from above. In this case
one has a vortex at the m � 21 state and an antivortex at
the m � 1 state. As a displaced vortex and an antivortex
precess in opposite directions, the monopole core will
vanish only to reappear at the opposite side as soon as the
090404-3
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vortices have precessed that far. This recurrence is almost
perfect [20]. Partial revival of a monopole has also been
predicted in case of a 2D monopole [8]. As the vortices
precess in opposite directions, the order parameter be-
comes magnetized and can no longer be represented in the
form given by Eq. (1). Therefore, the order parameter is
no longer in the order parameter space of the ground state.
Obviously, our proposed approach to create monopoles
experimentally applies to the three-component case as
well. But then one needs to create a vortex/antivortex in
the m � 61 state, respectively, in addition to the soliton
in the m � 0 state.

In Ref. [4] the dynamics of the monopole were due to
the two different scattering lengths. In our inhomogeneous
spinor condensate the dynamics are not intimately con-
nected with differing scattering lengths. Setting a2 � a0
does not change our results qualitatively and even the quan-
titative changes are small. Therefore it seems clear that in
an inhomogeneous spinor condensate the dynamical be-
havior of the monopole goes beyond the model suggested
by Stoof et al. in Ref. [4].

If we displace the monopole from the center of the
spherically symmetric trap, the energy of system decreases
as a function of the displacement (in qualitative agreement
with the results in Ref. [4]). A soliton in a dissipative en-
vironment turns into a gray soliton and accelerates to the
edge of the condensate [22]. The vortex, on the other hand,
is expected to spiral away from the condensate [23]. By in-
serting a small imaginary part to the time step we saw that
both of these expectations are fulfilled. Estimates for the
time scales of these processes go beyond the model used
in this paper. But in single-component condensates the
vortex lifetimes can be several seconds [17], and this time
scale is also, presumably, the upper limit of the monopole
lifetime. As the cores of the soliton and the vortex are
filled with the other component, one can suspect that the
thermal component plays a less significant role than it does
in a one-component system. Also problems caused by the
dynamical instability of the soliton can be avoided in the
two-component system [24].

To summarize, we have proposed and demonstrated
numerically a method to create monopoles in three-
dimensional Bose-Einstein condensates, and shown that
monopole creation is not limited to the antiferromagnetic
spinor condensates. In addition, we have studied the
detection by expansion of such monopoles, and also
the dynamics of displaced monopoles in a trap. For the
creation of two-dimensional monopoles, an off-resonant
090404-4
Raman beam has been suggested [7], but so far there has
not been any suggestions for creating a three-dimensional
monopole in a realistic experiment. Also, replacing a
single vortex at one component with a lattice of vor-
tices in our approach could lead to creation of multiple
monopoles, and allow one to study interactions between
monopoles.
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