
VOLUME 88, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 4 MARCH 2002

090402-1
Signatures of Resonance Superfluidity in a Quantum Fermi Gas
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We predict a direct and observable signature of the superfluid phase in a quantum Fermi gas, in a
temperature regime already accessible in current experiments. We apply the theory of resonance super-
fluidity to a gas confined in a harmonic potential and demonstrate that a significant increase in density
will be observed in the vicinity of the trap center.
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Following the successful realization of Bose-Einstein
condensation (BEC) in confined vapors [1], it is natu-
ral to consider possibilities for observing the analogous
superfluid phase transition in a dilute Fermi gas. Quan-
tum degeneracy has already been demonstrated in a two-
component Fermi gas of 40K atoms [2], although the spin
states utilized were not suitable for exhibiting superfluid-
ity. The lowest temperatures achieved to date in this sys-
tem are around 0.2TF—limited by Pauli blocking as well
as a number of technical considerations [3]. In other ex-
periments, the rethermalization of fermion atoms by elastic
collisions with a bath of ultracold bosons is exploited; re-
alized by mixtures of 6Li and 7Li at Rice [4], at ENS [5],
and at Duke [6], and more recently by mixtures of 40K
atoms and 87Rb atoms at JILA [7].

In order to observe a superfluid phase transition at criti-
cal temperatures as high as 0.2TF , the existence of a
strong coupling mechanism which could lead to a sig-
nificant amount of Cooper pairing is necessary. Several
theoretical papers have presented models to investigate
this regime, essentially based on application of the
Bardeen-Cooper-Schrieffer (BCS) [8] theory of supercon-
ductivity. These approaches consider dilute Fermi vapors
in which the two-body scattering processes are character-
ized by a large negative scattering length a [9]. Under such
conditions the relevant length scale—the spatial extent of
the Cooper pair—may become comparable to the average
interparticle spacing. This places the system in a crossover
region from the BCS superfluidity of momentum-
correlated fermion pairs to the BEC of tightly bound
composite bosons. In this crossover regime, fluctuations
play a crucial role [10] and must be addressed.

Eventually, as the coupling is increased, it becomes nec-
essary to construct a theory in which explicit treatment
of the composite bosonic states is made. Such an ap-
proach was proposed in the context of high-temperature
superconductivity [11] and is based on an effective many-
body Hamiltonian, in which quasibound pairs are explicitly
treated as resonance states embedded in the continuum of
the Fermi sea. Such resonances are ubiquitous in atomic
physics, where, for example, a Feshbach resonance [12]
can be utilized to tune a quasibound state through thresh-
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old, providing an explicit microscopic basis for a theory of
resonance superfluidity [13,14].

A convincing method for detecting the superfluidity will
be required. Various approaches have been proposed;
including measurements of the pair distribution [15], ex-
periments involving the breakup of the Cooper pairs [16],
measurements of the moment of inertia [17], and probes of
collective excitations [18,19]. In this Letter, we show that
a more straightforward and direct experimental signature
of the transition to the superfluid phase is provided by the
density characteristics in an inhomogeneous system. We
demonstrate that in a harmonic trap, the superfluid state is
manifest as the appearance of a bulge in the central atomic
density. To this aim we derive a theory of resonance super-
fluidity including the description of external confinement.

Although our results will have general applicability, for
the purpose of illustration, we consider a typical system of
N � 5 3 105 atoms in an isotropic harmonic trap with an-
gular frequency v � 2p 3 100 s21. This gives a Fermi
energy of EF � �3N �1�3h̄v. We consider a 40K Feshbach
resonance, illustrated in Fig. 1, for s-wave scattering of
atoms in the lowest two hyperfine spin states which we
denote by s [ �", #�. We begin by considering the general
structure of the theory for the homogeneous system where
the fermions are represented by the wave-number-k depen-
dent annihilation operators aks and the composite boson
field by bk. The Hamiltonian is

H �
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where H.c. denotes the Hermitian conjugate. The free dis-
persion relation for the fermions is ek , and n denotes the
detuning of the boson resonance state from the zero edge
of the collision continuum. The collisional interactions
include both background fermion scattering and intercon-
version between composite bosons and fermion pairs. It
is implicit in treating U and g as constants that the theory
© 2002 The American Physical Society 090402-1
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FIG. 1. Real (solid line) and imaginary (dashed line) compo-
nents of the T matrix for collisions of the lowest two spin states
of 40K at a detuning of 20EF , shown in length dimensions, i.e.,
Tk��4p h̄2�m�. The scattering length is the intercept at zero scat-
tering energy which for this case is approximately 210 000a0,
where a0 is the Bohr radius. The large variation in the T matrix
over the relevant energy range indicates that a quantum field the-
ory developed from this microscopic basis will in general need to
account for physics beyond the scattering length approximation.
The inset shows the scattering length as a function of detun-
ing, with 20EF detuning indicated by the dash-dotted line. This
curve obeys the following form: a � abg�1 2 k�n0�, where
abg � 176a0 and k � 0.657 mK [20]. The quasipotentials to
be renormalized are then U0 � 4p h̄2abg�m and g0 �

p
kU0.

will be renormalized and thereby contain no ultraviolet
divergences in the calculation of observable quantities
[21]. This procedure involves ascribing a cutoff value
K as the upper limit of all momentum summations and
renormalizing the Hamiltonian constants in terms of K
and the parameters for the Feshbach resonance as given in
Fig. 1. Defining a � mK��2p2h̄2� and a dimensionless
factor G � �1 2 aU0�21, the renormalization is executed
by the following relations U � GU0, g � Gg0, and
n � n0 1 agg0. All results presented here have been
shown to be independent of K.

From this Hamiltonian, we construct the dynami-
cal Hartree-Fock-Bogoliubov equations for both the
bosonic and fermionic mean fields. These equations
involve the mean fields corresponding to the spin density
n �

P
k�ay

ksaks� (taken to be identical for both spins), the
pairing field p �

P
k�a2k#ak"�, and the condensed boson

field fm � �bk�0�. The single particle density matrix

Gij � �Ay
j Ai�, A �

0BBBB@
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ak#
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evolves according to the Bogoliubov self-energy S,

ih̄
dG

dt
� �S,G	 . (3)
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The self-energy has Hermitian structure

S �

0BBBB@
Uk 0 0 D

0 Uk 2D 0
0 2D� 2Uk 0

D� 0 0 2Uk

1CCCCA , (4)

where the single particle energy is Uk � ek 2 m 1 Tkn,
the gap is D � Up 1 gfm, and m is the chemical poten-
tial. Here, without cost, we have upgraded the mean-field
contribution to the single particle energy (which would
otherwise be given by Un) to the full ladder sum, Tkn,
where Tk is the two-body T matrix. This expression for the
mean-field contribution to the particle energy is an approxi-
mation which is accurate for dilute Fermi gases where the
quantum Fermi pressure limits achievable densities. The
dynamical equations are closed by the evolution equation
for the boson mode:

ih̄
dfm

dt
� nfm 1 gp . (5)

The self-energy S is diagonalized locally at each k by the
Bogoliubov transformation generating quasiparticles with
energy spectrum Ek �

p
U2

k 1 jDj2. In equilibrium, the
quasiparticle states are occupied according to the Fermi-
Dirac distribution nk � �exp��Ek 2 m��kbT	 1 1�21.
The corresponding maximum entropy solution for the
molecule amplitude is found by ih̄dfm�dt � mmfm

where mm � 2m, so that Eq. (5) implies fm � gp�
�mm 2 n�. The mean fields can then be determined
by integration of the equilibrium single particle density
matrix elements, given by

n �
1

�2p�2

Z K

0
dk ��2nk 2 1� cos2uk 1 1	 ,

p �
1

�2p�2

Z K

0
dk �2nk 2 1� sin2uk ,

(6)

where tan2uk � jDj�Uk is the Bogoliubov transformation
angle. Since uk depends on n and p, these equations re-
quire self-consistent solutions [22].

So far this theory has been presented for a homogeneous
system, while we are interested in a gas of N atoms con-
fined in an external trapping potential V �r�. However, a
full quantum mechanical treatment of the trapping states
is not required. For instance, in our case, with a tempera-
ture of T � 0.2TF , the harmonic oscillator level spacing
is smaller than both the Fermi and thermal energies. Un-
der these conditions, we may incorporate the effect of the
trap through a semiclassical local density approximation
[23]. This involves replacing the chemical potential by a
local one m�r� � m 2 V �r� and determining the thermo-
dynamic solution at each point in space as for the homo-
geneous system.

In general, the validity of the semiclassical approxi-
mation requires a slow variation in the occupation of the
discrete quantum levels as a function of energy. Remark-
ably, in both bosonic and fermionic gases, this condition
090402-2
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can often be satisfied even at very low temperatures, be-
cause of strong correlations in a BEC due to repulsive in-
teractions and because of exchange effects in a quantum
Fermi gas. In both cases the zero-temperature semiclassi-
cal approximation for dilute gases is usually referred to as
the Thomas-Fermi approximation.

We evaluate the thermodynamic quantities at given T
and N in three steps: (i) For given m, we determine the
local chemical potential m�r� � m 2 V �r� and use this
value to find the self-consistent solution for the density
n�r� and pairing field p�r� at each point in space, accord-
ing to the solution of Eqs. (6); (ii) we modify the global
chemical potential m until the density integral is the de-
sired atom number, i.e., N �

R
d3r n�r�; (iii) we use the

resulting solution for m to calculate observable quantities,
such as the density, gap, compressibility, and so forth.

The resulting solution for the density distribution is il-
lustrated in Fig. 2. A striking signature of the resonance
superfluidity is evident in the predicted density profile
which has a notable bulge in the region of the center of
the trap. Experimentally, this signature appears to be di-
rectly accessible. A typical approach would be to fit the
expected density profile for a quantum degenerate gas with
no superfluid phase to the wings of the distribution (outside
the dotted lines shown in Fig. 2). Then the excess density
observed at the trap center can be recorded. Figure 3 illus-
trates the emergence of the superfluid as the temperature
is decreased. Qualitatively this situation is reminiscent of
the central condensate peak observed for a Bose-Einstein
condensed gas in a harmonic potential, although the con-
nection appears to be somewhat serendipitous.

We explain the observed behavior by considering
the compressibility of the normal and superfluid gases.
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FIG. 2. Density profile at temperature T � 0.2TF and detun-
ing n0 � 20EF showing accumulation of atoms at the trap cen-
ter (solid line). We compare with the profile resulting from the
same m (but therefore a different total number of atoms) by ar-
tificially setting the pairing field p to zero so that no superfluid
is present (dashed line).
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Thermodynamically, the isothermal compressibility C is
defined as C21 � n�≠P�≠n�T , where P is the pressure,
and is shown in Fig. 4. The compressibility is positive
everywhere, indicating that, in spite of the large attractive
interactions, the Fermi pressure makes the configuration
mechanically stable. A significant feature is the discon-
tinuous behavior at the radius from the trap center at which
the superfluid changes from a zero to a nonzero value.
This discontinuity is a manifestation of a second-order
phase transition occurring in space. The discontinuity
is a consequence of the local density approximation and
cannot occur in a finite system. However, a rapid change
in the compressibility is expected. In principle this could
be probed by studies of shock waves generated by the
abrupt jump in the speed of sound as a density fluctuation
passes through this region.

In conclusion, we demonstrated that there exists a direct
signature of superfluidity in trapped fermion gases. The
onset of superfluidity leads to a density bulge in the cen-
ter of the trap which can be detected by direct absorption
imaging. The critical conditions for superfluidity are sat-
isfied initially in the trap center, and the region of nonzero
pairing field spreads out from the center as the temperature
is lowered further. The increase in the density profile in
the superfluid region is caused by a jump in the compress-
ibility. Direct measures of this behavior are possible by the
study of the propagation of sound waves. We have applied
our method here to 40K, but a similar approach is easy to
derive for other interesting atoms, including, in particular,
6Li which is the other fermionic alkali currently being in-
vestigated experimentally.
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FIG. 3. Emergence of the coherent superfluid for n0 � 20EF .
The superfluid occupies an increasing volume as the temperature
is reduced. Shown is the excess density (difference between the
dashed and solid lines in Fig. 2) at each temperature.
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FIG. 4. Inverse isothermal compressibility C21 in units of the
Fermi energy (solid line). Here n0 � 20EF and T � 0.2TF
(as can be seen from the limiting behavior at the large radial
position). A discontinuity appears at the radius at which the
superfluid emerges (dotted line). We compare this solution to
that corresponding to zero pairing field and no superfluid phase
transition (dashed line).
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