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Periodically Dressed Bose-Einstein Condensate: A Superfluid
with an Anisotropic and Variable Critical Velocity
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We consider a two-component atomic gas illumined by two intersecting laser beams which induce
Raman coupling between the components. This spatially periodic coupling modifies the dispersion re-
lation of the gas. Properties of a Bose-Einstein condensate of such a gas are strongly affected by this
modification. Using the quasiparticle excitation spectrum derived from a Bogoliubov transformation, the
Landau critical velocity is found to be anisotropic and can be widely tuned by varying properties of the
dressing laser beams.
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In numerous physical systems, particles confined to a
medium can be treated as free particles whose properties
are modified by the medium. For example, electrons in a
periodic solid can be treated as particles with properties
which can be engineered by modifying the periodic struc-
ture. In this Letter, we consider similarly the task of engi-
neering novel macroscopic quantum behavior in an atomic
gas by placing the gas in a properly constructed periodic
medium.

A periodic potential for an atomic gas can be produced
by intersecting two or more laser beams. A polarizable
atomic gas illuminated by two intersecting off-resonant
laser beams with identical polarization and frequency
experiences a spatially periodic potential proportional to
the light intensity; i.e., the atoms reside in a crystalline
medium made of light. Atoms in such media have been
studied in the nondegenerate [1] and quantum degenerate
[2] regimes. A small frequency difference v � v1 2 v2
between the laser beams can induce Bragg transitions
between identical internal but different momentum states.
Such Bragg transitions have been used to probe Bose-
Einstein condensates [3].

In this Letter, we present a different scheme for engi-
neering properties of an ultracold gas. Rather than consid-
ering a spatially periodic potential, we consider a spatially
periodic coupling between two internal states of an atomic
0031-9007�02�88(9)�090401(4)$20.00
gas; i.e., we consider using laser beams which effect Ra-
man rather than Bragg transitions. An atomic gas in this
medium is characterized by a tunable dressed-state disper-
sion relation. In creating a Bose-Einstein condensate of
such a gas, one may explore how the nature of free single-
particle excitations can modify macroscopic properties of
a quantum fluid. In particular, we show that this novel
quantum fluid has a variable and anisotropic superfluid
critical velocity.

Let us consider a uniform dilute gas composed of atoms
of mass m with two internal ground states, ja� and jb�,
separated by an energy h̄v0, and an excited state je�
(Fig. 1). This gas is exposed to two laser beams (labeled
1 and 2), with wave vectors k1 and k2 and frequencies
v1 and v2, respectively. The beams are polarized so that
beam 1 connects states ja� and je� and beam 2 connects
states jb� and je�, while both beams have a large detun-
ing D from these transitions. These laser beams can in-
duce Raman transitions between the two internal ground
states. A transition from state ja� to jb� results in a mo-
mentum kick of h̄k � h̄�k1 2 k2�. Such coupling can
be represented in position space as a spatially periodic
coupling between the two internal states, proportional to
eik?r jb� �aj 1 e2ik?rja� �bj.

A gas exposed to these beams can be described by the
second-quantized dressed-state Hamiltonian [4]
H �
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Here aq and bq (ay
q and by

q ) are the annihilation (creation)
operators for atoms with wave vector q in internal states
ja� or jb�, respectively. The operators c1 and c2 (c

y
1 and

c
y
2 ) are photon annihilation (creation) operators for photons

in beams 1 and 2.
Now define states jaq� � jN1 1 1; N2; a, q 2 k�2� and

jbq� � jN1; N2 1 1; b, q 1 k�2� which are connected by
a Raman transition. The notation indicates that for state
jaq� there are N1 1 1 photons in beam 1, N2 photons
in beam 2, and one atom is in state ja� with momen-
tum h̄q 2 h̄k�2. These two states have the same total
momentum [5], which we define as h̄q by a choice of ref-
erence frame.
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FIG. 1. Engineering properties of a periodically dressed
atomic gas. (a) Laser beams of frequency v1 and v2 induce
Raman transitions between internal states ja� and jb�. (b) Such
a Raman transition imparts a momentum transfer of h̄k �
h̄�k1 2 k2�, where k1 and k2 are the wave vectors of the
Raman coupling lasers.

Diagonalizing the Hamiltonian in the subspace of states
jaq� and jbq� yields the dressed-state atomic eigenstates
j6q� with energies
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where d � �v1 2 v2� 2 v0 is the detuning
from the Raman resonance. We define V �
2e

p
�N1 1 1� �N2 1 1��h̄ as the (real) two-photon Rabi

frequency, while e is related to the product of dipole
matrix elements which couple states ja� and jb� to the
excited state je�. Creation operators pq (for state j1q�)
and mq (for state j2q�) are defined asµ aq
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where R�uq�2� � e2isyuq�2 (sy is a Pauli matrix) rep-
resents a rotation by the angle uq�2 where tanuq � V�
�d 1 h̄q ? k�m�.

The dressed-state dispersion relation [Eq. (2)] is shown
in Fig. 2. The ground state occurs in the lower dressed
state at a wave vector Q, which is near either 6k�2 de-
pending on the sign of d.

Let us now consider the effects of Raman coupling on
a two-component Bose-Einstein condensate, which is now
formed of a macroscopic population of atoms in the low-
est energy state j2Q�. This condensate has a two-branch
excitation spectrum, reflecting the presence of two inter-
nal states (and, correspondingly, two dressed-state levels).
As with a scalar Bose-Einstein condensate, weak repulsive
interactions should yield phononlike excitations at low en-
ergies and a free-particle-like dispersion relation at high
energies. However, we expect properties of a periodically
dressed Bose-Einstein condensate to reflect the anisotropy
of the dressed-state dispersion relation.

Let us now treat explicitly the effects of atomic colli-
sions by writing the many-body Hamiltonian as

H �
X
q

�h̄v2
q my

qmq 1 h̄v1
q py

q pq� 1 Hint . (4)
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FIG. 2. Dressed-state dispersion relation: single particle ener-
gies h̄v6

q vs (normalized) wave vector q�k parallel to the mo-
mentum transfer h̄k. Energies are scaled by Ek � h̄2k2�2m.
For the traces shown, h̄d�Ek � 3�2 (solid lines), 0 (dashed
lines), or 21�2 (dotted lines), while for all traces h̄V�Ek � 1.
For d fi 0, the dispersion relation is asymmetric. As d changes
sign, the momentum of the lowest energy state changes discon-
tinuously. For d � 0, the ground state is degenerate.

Considering only elastic binary collisions (which conserve
the number of atoms in each of the internal states) charac-
terized by identical s-wave scattering lengths a, we may
write the interaction Hamiltonian Hint as

Hint �
g

2

X
q
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Here g � �4p h̄2a�mV �, V is the volume occupied by the
gas, and N is the number of atoms in the gas. We express
nq �
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form of the density operator, as
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Note that elastic collisions do not generally conserve the
number of atoms in the upper and the lower dressed state,
respectively.

We now make use of the Bogoliubov approximation [6]
in which we assume a macroscopic population of N0 atoms
in the lowest energy state of wave vector Q and substitute
mQ � m

y
Q �

p
N0. To proceed, we consider the four-

component vectors y � �mQ1q, imy
Q2q, pQ1q, ip

y
Q2q�

and w � �my
Q1q, imQ2q, py

Q1q, ipQ2q�. The Bose com-
mutation relations of the dressed-state annihilation and
creation operators can be expressed as �yi , wj� � dij. Iso-
lating terms of order N2 and N , we may now approximate
the Hamiltonian as
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where H is a 4 3 4 matrix of the form Hij � Eij 1

mxixj . The diagonal matrix Eij has entries E2
q , 2E2

2q,
E1

q , and 2E1
2q, where E6
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Q1q 2 v

2
Q �. The

chemical potential is given by m � gN , and we define
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the four-component vector x � �cosDq, 2i cosD2q,
sinDq, 2i sinD2q�, where Dq � �uQ1q 2 uQ��2.

The quasiparticle energies and their creation and anni-
hilation operators are found by diagonalizing the matrix
H [7]. The eigenvalues of H are found to be h̄ṽ

2
Q1q,

2h̄ṽ
2
Q2q, h̄ṽ

1
Q1q, and 2h̄ṽ

1
Q2q, by which we define the

lower and upper quasiparticle excitation energies at wave
vector Q 6 q.

Figure 3 shows the quasiparticle spectrum calculated
for excitations parallel to the Raman transition momen-
tum transfer. In choosing parameters for this calculation,
we have in mind an experimentally convenient realization
with a Bose-Einstein condensate of 87Rb. One may choose
the internal ground hyperfine states ja� � jF � 1, mF �
21� and jb� � jF � 2, mF � 1� which can be connected
by a two-photon Raman transition. Choosing these states
has the benefit that the Raman transition frequency is
insensitive to magnetic field fluctuations, both hyperfine
states are magnetically trappable, and, specifically in 87Rb,
inelastic collisions are scarce. Furthermore, the scattering
lengths for all elastic collisions are nearly the same, jus-
tifying the assumption made in Eq. (5). We consider the
case of counterpropagating Raman laser beams which are
nearly resonant with the D2 transition (k 	 4p�l, where
l � 780 nm). The chemical potential m � h 3 2.5 kHz
corresponds to a condensate density of 3 3 1014 cm23.

As shown in Fig. 3, the quasiparticle energies are higher
than the free dressed-state energies due to the repulsive
interactions between atoms. Comparing the quasiparticle
spectrum to that for the two-component condensate in the
absence of Raman coupling �V ! 0�, one sees that the ef-
fect of the dressing lasers is to introduce avoided crossings
to the spectrum. The spectrum for quasiparticle excita-
tions near the condensate momentum Q (i.e., wave vec-
tors Q 1 q for small q) is linear, describing phononlike
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FIG. 3. Bogoliubov quasiparticle dispersion relation of a
periodically dressed Bose-Einstein condensate. We consider a
gas of 87Rb exposed to counterpropagating Raman beams, with
h̄d � 2Ek�2, h̄V � Ek , and m � 0.3Ek � h 3 2.5 kHz.
Excitations parallel to k are considered. Lower and upper quasi-
particle excitation branches are shown (solid lines). The quasi-
particle energy spectrum is higher than the free dressed-state
dispersion relation (dotted lines). Compared to the dispersion
relation in the case of no Raman coupling (dashed lines), the
effect of Raman coupling is to induce a level anticrossing.
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excitations. For excitations parallel to the direction of mo-
mentum transfer and making small q approximations to the
Hamiltonian, we find the lower excitation spectrum to have
the limiting value h̄ṽ

2
Q1q � c�h̄q, where c� �

p
m�m� is

the Bogoliubov speed of sound corresponding to an effec-
tive mass m� determined by the curvature of the dressed-
state dispersion relation at its minimum. We note further
that the complex matrix H which appears in the Hamil-
tonian has two positive and two negative real eigenvalues
[8], as is required for the stability of the condensate.

Finally, we consider the implications of the dressed-state
dispersion relation for the superfluidity of the periodically
dressed Bose-Einstein condensate. An explanation for the
dissipationless flow of a superfluid below a critical veloc-
ity yL was provided by Landau, who used kinematic ar-
guments to define yL � minE�q��h̄q, where E�q� is the
quasiparticle excitation energy at wave vector q [9]. For
weakly interacting scalar Bose-Einstein condensates, the
Landau critical velocity yL is equal to the speed of sound
c �

p
m�m. This contrasts with the behavior of super-

fluid 4He, for which there exists a secondary minimum in
the excitation spectrum corresponding to rotons [10]. The
Landau critical velocity in that case is set by the roton
minimum [11].

The dispersion relation of periodically dressed Bose-
Einstein condensates suggests an analogy to superfluid
4He and a reduction of the superfluid velocity below the
speed of sound. Figure 4 shows the Landau critical veloc-
ity calculated for flow parallel to the Raman momentum
transfer k, as the Raman laser detuning d is varied. For
large values of jdj, the critical velocity equals the speed
of sound

p
m�m. As jdj is lowered, the critical velocity
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FIG. 4. Landau critical velocity in a periodically dressed
Bose-Einstein condensate. Velocities aligned with (positive yL)
or counter to (negative yL) the Raman momentum transfer k
are considered, and we take h̄V � Ek. At large detunings
jdj, yL has the same magnitude for flow in both directions,
with a value approaching the Bogoliubov speed of sound
c �

p
m�m � 3.3 mm�s for a 87Rb condensate at the density

of 3 3 1014 cm23. At smaller detunings, an anisotropy in yL
develops. For 
d . 0, yL . 0� and 
d , 0, yL , 0�, yL is
determined by the effective speed of sound c�. In the regimes

d . 0, yL , 0� and 
d , 0, yL . 0�, the magnitude of yL
is lowered due to the secondary minimum in the dispersion
relation.
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becomes anisotropic. In one direction, yL � c� �
p

m�m�

as determined by phonon scattering. In the other direction,
yL is dramatically lowered due to scattering at the sec-
ondary minimum (an “artificial roton”) in the dispersion
relation. We may approximate the artificial roton mini-
mum as occurring at energy h̄jdj and quasiparticle mo-
mentum h̄k, obtaining jyLj 	 jd�kj in this regime. Thus,
the superfluid properties can be controlled by varying the
detuning and by changing the relative angle between the
Raman laser beams.

One may also vary the intensity of the Raman beams,
thereby changing V. An important impact of changing the
Raman coupling strength is not only altering the Landau
critical velocity, but also controlling the degree to which
quasiparticles in the lower or upper excitation branches
can be created by scattering off an obstacle. That is, the
Landau criterion determines the onset of dissipation for a
moving superfluid but does not describe the strength of
such dissipation. A large Raman coupling would enhance
scattering into the secondary minimum of the lower excita-
tion branch, while in the limit V ! 0, this scattering rate
clearly vanishes. A detailed calculation of this dissipation
rate (similar to Refs. [12–14]) will be given elsewhere.

In summary, we have described a means of engineering
a novel quantum fluid composed of dressed-state atoms in a
spatially periodic Raman coupling medium. This quantum
fluid should be amenable to study using current techniques
for probing ultracold atomic gases, such as methods for
studying collective excitations at various length scales [15]
and for probing aspects of superfluidity [13,16]. Further
theoretical work should address a number of issues such
as the effect of a trapping potential, the behavior near the
Raman resonance where the ground state is degenerate, and
the possible extension of our scheme to condensates with
more than two internal states, such as spinor Bose-Einstein
condensates [17].
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