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Enhanced Drainage and Coarsening in Aqueous Foams
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Experiments are presented elucidating how the evolution of foam microstructure by gas diffusion
from high to low pressure bubbles can significantly speed up the rate of gravitational drainage, and
vice versa. This includes detailed data on the liquid-fraction dependence of the coarsening rate, and
on the liquid-fraction and the bubble-size profiles across a sample. These results can be described by
a “coarsening equation” for the increase of bubble growth rate for drier foams. Spatial variation of the
average bubble size and liquid fraction can also affect the growth and drainage rates.
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Aqueous foams are far from equilibrium. With time,
they drain by flow of liquid in response to gravity and
they coarsen by diffusion of gas from smaller to larger
bubbles [1]. These phenomena are of fundamental interest
for their interplay with the disordered packing structure
of the bubbles and the topology of the random network of
soap films. Stability issues are also crucial for applications,
whether the foam is an unwanted byproduct or a specially
designed material. In the past, drainage and coarsening
have been investigated separately, assuming that only one
effect dominates. This has led to a good understanding of
coarsening in dry foams [2], and of forced drainage [1,3]
where liquid is poured onto a foam from above. However,
the common situation of free drainage, in which a foam
is allowed to drain without interference, remains puzzling.
Rates are faster, and have a different time- and sample-
height dependence, than expected [4,5].

In this paper, we explore the idea [5] that coarsening
plays an unavoidable role in free drainage. As a foam
becomes drier from drainage, the rate of gas diffusion in-
creases; as the average bubble size becomes larger from
coarsening, the rate of drainage increases; and so on. This
vicious cycle can be seen by shaking a bottle of soapy wa-
ter until the foam is uniform and then waiting: as drained
liquid emerges underneath the foam, the bubbles near the
top become more polyhedral (dry) and grow rapidly, while
the bubbles near the bottom become more spherical (wet)
and grow slowly. This can also be demonstrated by the
variation of drainage rate with the solubility of the gas [6].
Here, we quantify the coarsening/free-drainage connection
in terms of foam microstructural evolution by imaging and
by novel use of multiple light scattering. The results can
be summarized in terms of a “coarsening equation” for the
growth rate of bubbles. Taken together with a modified
version of the standard drainage equation, this gives good
predictions for the free drainage problem.

The most straightforward measure of drainage is the vol-
ume of liquid that seeps out underneath a foam vs time.
Example data are shown by open circles in Fig. 1 for two
different samples. Both foams consist of polydisperse Na
gas bubbles, initial average diameter ~100 um, dispersed
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PACS numbers: 82.70.Rr, 02.30.Jr, 47.55.Mh, 83.80.H;j

in an aqueous solution of AOS (alpha-olefinsulfonate) as
in [4]. The first has an initial liquid fraction of g9 = 0.08,
and is in a rectangular tank of height H = 25 cm, thick-
ness 11.7 mm, and width 17 cm. The second has an initial
liquid fraction of &y = 0.36, and is in an “Eiffel Tower”
tank of height H = 70 cm, thickness 1.25 cm, and width
that grows with depth (measured downward in the direction
of gravity) as exp(z/25 cm). If coarsening did not occur,
then drainage would proceed only until capillary forces
balanced gravity, which for these samples would be when
roughly half the liquid has escaped. By contrast, the actual
drainage in Fig. 1 continues past this point and is bounded
only by the total volume of liquid in the sample. Conse-
quently, the predictions of the standard drainage equation,
shown as dashed curves, are dramatically wrong in both
shape and time scale.

Recently we hypothesized [5] that coarsening is re-
sponsible for the accelerated drainage behavior seen in
Refs. [4,5] and highlighted here in Fig. 1. To truly test
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FIG. 1. Volume of drained liquid vs time. Open circles are
from the height of liquid underneath the foam; solid diamonds
are from the liquid-fraction profile inside the foam. Solid
(dashed) curves are from numerical solution of the drainage
equation with (without) effects of coarsening; the dotted curve
in (b) is for Eq. 6 of Ref. [5].
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this, it is necessary to characterize the average bubble size
R(z,t) and the volume fraction of liquid &(z, 7) as a func-
tion of both time and depth throughout the sample. To de-
duce the former, we simply count the number of bubbles
per unit length along the surface using video microscopy.
Though this is straightforward, if laborious, such data have
not been reported previously since it was always assumed
that the bubble size distribution did not coarsen during
drainage. Our results, in Fig. 2(a), show that this need
not hold. As early as 200 s, when drained liquid has only
first begun to emerge, the bubbles have grown noticeably
larger. Note that the growth is fastest (slowest) near the
top (bottom) where the foam is most dry (wet). Near the
middle of the sample, R grows by a factor of nearly 4 (10)
at 1 = 540 s (2400 s), when 50% (90%) of the liquid has
leaked out.

To deduce &(z, r) we exploit diffuse light transmission.
For this, two vertical fluorescent lights are arranged be-
hind the sample so that unscattered light cannot reach the
CCD camera. Initially the foam is opaque, so the dif-
fuse transmission scales with the photon transport mean
free path and sample thickness as Ty ~ [I*/L << 1. Af-
ter significant drainage and coarsening, the foam becomes
nearly transparent with T; ~ L/I* < 1. The full depen-
dence of T, exhibits a maximum near L = [* [7] that
we use to normalize the data. This maximum depends
on the boundary reflectivity, which is known from refrac-
tive indices, and on the average cosine of the scattering
angle, which is about 0.5 [8]. Using both [*(z,7) and
R(z, t) data we deduce &(z, t) from the foam optics relation
[* = R(3.0 + 0.28/¢) [8], which describes how photons
are scattered more strongly for wetter foams with smaller
bubbles. Results are shown in Fig. 2(b). The integrity
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FIG. 2. Bubble radius and liquid fraction vs depth z for the
draining foam of Fig. la. Solid curves are from video and
diffuse transmission data; dashed curves are from the numerical
solution of the coupled drainage and coarsening equations. The
time sequence is ¢+ = 60, 120, 300, 540, 1080, and 2400 s.
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of these procedures is checked by computing the volume
of drained liquid from the amount still remaining in the
sample [ A(z)e(z,t)dz. As shown by the solid diamonds
in Fig. 1(a), the agreement with direct measurement is
quite good. Together, the complete data set of Figs. 1-2
constitutes the most detailed experimental description of a
freely draining foam currently available.

The coupling between drainage and coarsening may
be studied most cleanly by isolating the liquid-fraction
dependence of the coarsening rate. The classic result
for bubble growth by gas diffusion is R(¢) o« \/f — 7, for
uniform foams [2]. In other words, the average bubble ra-
dius obeys

R(dR/dt) = DF(¢), (1)

where D is a materials-dependent number with units of a
diffusion coefficient and F (&) is a (presumably) universal
function of only & that we wish to determine. Note partic-
ularly that the combination R(dR /dt) is independent of R.
In Fig. 3 we display experimental results for this quantity,
obtained by two means. In the first, we merely compute
R(9R/0dt) for the data of Fig.2 and plot it vs € as a
parametric function of time and depth. Clearly the coars-
ening rate increases for drier foams. Unfortunately there
is considerable spread in the rate, due in part to numerical
differentiation of radius data that are sparsely based in
time. Systematic error is also present if the local coars-
ening rate depends on spatial derivatives of R and/or &
(as will be argued later), or if the foam-optics calibration
between [*/R and e is incorrect for & < 0.008 (i.e.,
outside the observation range from which it was deduced),
or if the diffusion theory prediction of 7 is flawed for dry
foams in the notoriously difficult regime L/I* < 3. For a
much better measure of the F(e) (which in fact was our
original experiment), we use a series of uniform foams
with accurately known liquid fractions. These are con-
structed one-at-a-time across the range 0.02 < gg < 0.35
and placed in a rectangular tank. During the initial
stages of evolution, the central portion of the foam
maintains the original liquid fraction while the top and
bottom, respectively, become drier and wetter. Since these
samples are opaque, the average bubble radius is deduced
from T, oc [* o« R with little error; note that this probes
bulk bubbles, superior to video measurement of surface
bubbles. With time R(z) grows by a factor of slightly
greater than 2 before the drying front sweeps through
the measurement region and alters €. The observed time
dependence is always R(t) « \/t — fy, as expected. By
fitting to this simple form, an accurate value of R(dR/dt)
may be deduced. The results in Fig. 3 (large diamonds)
show that the previous data (small dots) are not grossly
incorrect. Both sets of data, especially the highly reliable
one, may be described by Eq. (1) with the empirical form
F(e) = 1/\/[e.

Our data for the & dependence of the coarsening rate
make it possible, for the first time, to compare directly
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FIG. 3. Bubble growth rate vs liquid fraction R(dR/dt) =
DF(g). Solid diamonds are from R(tr) data for foams with

constant &; small dots are from R(z,t) and &(z,t) data for a
single foam sample with initial &y = 0.08. As explained in the
text, the latter is subject to several sources of systematic er-
ror. Fits to the reliable data set are shown as follows: solid
line for F(e) = 1//e; dotted curve for F(g) = (1 — \/&/e.)
[9,10]; dashed curve for F(g) = (1 — 1/&/0.44)% [11].

with expectation. For fairly dry foams, the liquid can be
cleanly partitioned into three distinct structures: (a) thin
soap films; (b) plateau borders, at which three films meet;
and (c) vertices, at which four borders meet. The film
thickness, € = 100 nm, is assumed to be set by interfa-
cial forces independent of €. Typically, € is much smaller
than the radius of curvature r of the plateau borders, which
in turn is much smaller than the sphere-equivalent radius
R of the bubbles. Therefore, essentially all liquid re-
sides in the plateau borders, whose thickness varies with
liquid-fraction according to & = (r/R)? [1,3]. Additional
liquid merely “decorates” the plateau borders, without any
changes to vertex positions or film curvatures [1,9]. Con-
sequently, drainage proceeds by flow of liquid through
the plateau borders; flow within the films does not con-
tribute [1,3]. Similarly, coarsening proceeds by diffu-
sion of gas across the films; diffusion across the borders
does not contribute [9]. Drier foams have thinner bor-
ders, wider films, and correspondingly faster coarsening
rates. Based on such geometrical considerations alone, the
liquid-fraction dependence of the coarsening rate is given
to leading order by F(g) = 1 — y/&/&. [9,10]. Decora-
tion of the plateau borders in a monodisperse foam gives
F(g) = (1 — 4/e/0.44)% [11]. By contrast with the coars-
ening rate data in Fig. 3, these predictions appear to satu-
rate too readily at low & and to decrease too rapidly at high
€. The cause for the latter is probably that gas diffusion
through borders and vertices cannot be neglected for wet
foams, where the bubbles are nearly spherical and the films
are only vanishingly wide.

The cause for the observed behavior of F(g) at low &
is not as obvious. One possibility is that the film thick-
ness is not truly constant. If & is less than on the order of
€/R, then borders and films will compete for liquid; the
film thickness will hence be smaller than the minimum in
the effective interfacial potential and the film tension will
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be larger than twice the bare liquid-vapor surface tension.
Both effects would cause a faster coarsening rate at small
€. This must eventually come into play, but not neces-
sarily here since £/R ~ 1073 is drier than the onset of
deviation. However, recent experiments suggest that the
film thickness increases linearly with & under conditions
of steady forced drainage [12]. A more geometrical pos-
sibility is that the film curvature is not truly independent
of &. The notion that the addition of liquid merely “deco-
rates” plateau borders, without changing film curvatures,
is actually a theorem for sufficiently dry two-dimensional
foams [9]. But the proof cannot be carried into three di-
mensions unless all films are perfectly spherical [1], which
they are not. Since a change in film curvature is not strictly
forbidden, the pressure difference between bubbles and the
resulting rate of gas diffusion per unit area are free to vary
with €. Another geometrical possibility is that polydis-
persity in bubble sizes and films plays a role. Further re-
search is needed to sort out the relative importance of these
varied effects.

We now turn to incorporating the effects of coarsening
on drainage, particularly for comparison with the drainage
curves of Fig. 1. Prior treatments of coarsening all assume
that the liquid-fraction and the bubble radius distribution
are homogeneous throughout the sample. This isn’t the
case for free drainage and, in fact, gives rise to an addi-
tional coarsening and drainage mechanism. For example,
if € is uniform but R varies monotonically across the sys-
tem, there must be a net coarsening-driven transport of gas
in the direction of increasing average bubble size. Further-
more, gradients in this flux should contribute to the local
coarsening rate. Such coarsening-driven transport effects
must also arise if R is uniform but & varies across the
sample. Evidently, the bubble growth law must be gen-
eralized to the following partial differential “coarsening

equation”:
L ) S
R a 972l R ’

—~ =D
ot

R { F(e)
whatever the form of F(g). Here « is a numerical constant,
not fixed by dimensional arguments. Its value is expected
to be set by (R — R.)/R ~ 0.01, the difference between
the radii of the average bubble and the crossover bubble,
for which dR./dr = 0 instantaneously holds. This is be-
cause the usual coarsening rate depends on this difference,
while coarsening-driven transport depends on the spatial
variation of averages.

For drainage, the downward liquid flow speed u(z, 1)
is set by the forces of gravity, capillarity, and viscosity
[1,3]. But as noted above there can also be a coarsening-
driven flux of gas, the gradient of which is the second
term in Eq. (2). To conserve volume, there must be an
opposite “displacement” flow of liquid that is (1 — &)/e
times larger. The sum of gravity-driven and coarsening-
driven flows is
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Note that the latter may become very large for small &, as
in the late stages of drainage. The exponentis m = 1(1/2)
when the surfactants provide a no-slip (free-slip) bound-
ary condition to liquid flow inside the plateau borders
[1,3]. For our foams, observable swirling in the soap
films implies m = 1/2 is appropriate. See Ref. [3] for
the other constants. The “drainage equation” is finally
obtained by expressing continuity of the total liquid flux,
de/ot + d(ue)/dz + (ue/A)dA/dz = 0.

Taken together, the coarsening and drainage equations
are coupled partial differential equations that may be
solved numerically for R(z,f) and &(z,7). Here we
discretize space and use a variable time step 4th-order
Runge-Kutta method. And we use the empirical rule
F(e) = 1/\/e. Accuracy is checked by reproducing
known soliton solutions for forced drainage, and by
confirming the equality of drainage curves computed
from the flux of liquid out the bottom and from the total
liquid remaining in the sample. For our £y = 0.08 foam,
numerical evolution is started from the measured profiles
at t = 60s. Of all the physical constants in Egs. (2)
and (3), all are independently known except K;, and
. We take a = 0.01 (variation by X10=! has little
effect until late times), and adjust only Kj,, in order
to fit the drainage curves in Figs. 1(a) and 1(b). The
best value is Kj/» = 8 X 1073, which is three times the
fitting result of [3]. The agreement for the g9 = 0.08
foam in the rectangular tank, Fig. 1(a), is excellent; the
agreement for the g9 = 0.35 foam in the Eiffel Tower
tank, Fig. 1(b), is also quite good. The agreement between
measured and predicted bubble-size profiles in Fig. 2
(not optimized by the fits) is good-to-fair. To highlight
the role of coarsening, predictions are shown as dashed
curves in Fig. 1 for the case D = 0 where coarsening
effects are completely absent. Finally, note that a regime
of coarsening-controlled drainage begins at about 1000 s.
Here gravity is nearly balanced by capillarity, and liquid
is released only as the bubbles grow larger. The liquid
remaining in the foam is mostly within a capillary rise
length of the bottom, and hence has a volume of order
e.Ay/[pgR(H,t)] with R(H,t) ~ \/t. This explains
why the drainage curve in Fig. 1(a) approaches 1 as 1/+/7.
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In conclusion, coarsening is unavoidable for freely
draining foams. Comprehensive data for the drainage of
liquid out from under a foam, and for R(z,?) and &(z,1)
obtained via imaging and light scattering probes, may
be described via the “coarsening equation” (2) and the
displacement flow in Eq. (3). Besides an explanation for
the observed liquid-fraction dependence of the coarsening
rate, F(g) = 1/./¢, several important issues remain. First,
the value of K/, has been inferred only by experiment,
with results for forced and free drainage differing by X3.
Second, the value of & needs to be determined by direct
experimental measurement of the consequences of spatial
variation of R and . These coarsening-driven transport
effects are previously unrecognized, but should occur in
any phase separating system with large-scale structure,
such as a polymer solution or metal alloy near a wall
or in a temperature gradient. Third, the failure of the
coarsening and drainage equations in the very dry and wet
limits, where € « (r/R)*> becomes invalid, needs to be
investigated. Both extremes should be important for the
free drainage problem, where the liquid fraction vanishes
near the top and remains large near the bottom.
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