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Packet Waves in a Reaction-Diffusion System
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The finite-wavelength instability gives rise to a new type of wave in reaction-diffusion systems:
packet waves, which propagate only within a wave packet, are found in experiments on the Belousov-
Zhabotinsky reaction dispersed in water-in-oil AOT microemulsion (BZ-AOT) as well as in model simu-
lations. Inwardly moving packet waves with negative curvature occur in experiments and in a model of
the BZ-AOT system when the dispersion dvk�dk is negative at the characteristic wave number k0. This
result sheds light on the origin of antispirals.
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Unraveling the mechanisms of nonequilibrium pattern
formation is essential for understanding complex living
and nonliving systems [1–3]. In general, pattern forma-
tion is associated with an instability of the homogeneous
steady state. Instabilities may be classified on the basis of
dispersion curves obtained by linear stability analysis [2].
Different values of the characteristic wave number k0 and
frequency v0 of the instability give rise to three fundamen-
tal types of patterns: Turing structures �v0 � 0, k0 fi 0�,
which are periodic in space and stationary in time; homo-
geneous bulk oscillations (Hopf bifurcation, v0 � vH fi

0 at k0 � 0); and patterns periodic both in space and
time (finite wavelength instability, v0 fi 0, k0 fi 0). The
last type of instability may be subdivided into traveling
waves and standing waves. Traveling waves in turn may
be categorized as phase waves or trigger waves. Examples
of trigger waves include outwardly rotating spiral waves
(spirals) and concentric waves [4–6].

Recently, we have discovered new patterns: inwardly
rotating spiral waves (antispirals) and inwardly propagat-
ing concentric waves (antipacemakers) [7]. These patterns
were found in the Belousov-Zhabotinsky (BZ) reaction
dispersed in water-in-oil aerosol OT (AOT) microemul-
sion. The BZ-AOT system [8,9] demonstrates a remarkable
variety of patterns [10] as the volume fraction of water
nanodroplets, fd , and the chemical composition are var-
ied: Turing structures, standing waves, oscillatory clusters,
accelerating waves, and a new wave phenomenon, which
we identify here as packet waves. In this Letter we present
these new experimental results, propose a simple model of
the BZ-AOT system, and use this model to illuminate the
mechanism of emergence of packet waves. We show that
antisprials and antipacemakers are a special case of a more
general phenomenon, inwardly moving packet waves.

The experimental arrangement and methods are de-
scribed in detail elsewhere [7,10]. Patterns in a BZ-AOT
microemulsion sandwiched between two flat optical win-
dows, separated by an annular Teflon gasket of 2 cm inner
diameter and 0.1 mm thickness, were observed at ambient
temperature through a microscope equipped with a digital
CCD camera. In Fig. 1a, packet waves propagate in the
0031-9007�02�88(8)�088303(4)$20.00
oscillatory medium parallel to the Teflon border close to
the bottom left corner. Waves fail to propagate into the
area to the right of and above the packet. Trigger waves
in such a situation would propagate from one boundary
to the other or until collision with another wave. After a
few dozen periods of local oscillation, the wave packet is
transformed into standing waves.

Figure 1b illustrates chaotic waves enveloped by plane
waves (perpendicular to the arrow) that are unable to pene-
trate the oscillatory area at the top (the Teflon border is near
the bottom). After 10–15 min, the chaotic waves evolve
into waves that move in opposite directions in adjacent ar-
eas (Fig. 1c). Under other conditions, in which we also

FIG. 1. Patterns in the BZ-AOT system. (a) �H2O���AOT� �
15, (b),(c) �H2O���AOT� � 16.4, (d) �H2O���AOT� � 15.2.
(a) fd � 0.57, (b),(c) fd � 0.64, (d) fd � 0.45. (a) �MA��
M � 0.25, (b) –(d) �MA��M � 0.3. (a),(d) �H2SO4��M � 0.2,
(b),(c) �H2SO4��M � 0.3. (a) �NaBrO3� � 0.15 M, (b),(c)
�NaBrO3� � 0.2 M, (d) �NaBrO3� � 0.23 M. �ferroin� � 4 mM.
(a) Size �mm 3 mm� � 2.5 3 2.2, (b),(c) size �mm 3 mm� �
1.88 3 1.4, (d) size �mm 3 mm� � 3.76 3 2.81. (c) Evolved
from (b). White corresponds to the maximum value of catalyst
Z (ferriin) concentration, black to minimum. Arrows mark di-
rection of wave movement. Teflon border is seen in (d) at right
bottom corner.
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observed inwardly rotating spiral waves [7], we found
waves moving toward the centers of their arcs, which were
situated at the edge of the reaction area (Fig. 1d). These
waves emerged at the boundary between the oscillatory
area (left top corner) and the wave packet.

All the waves in Fig. 1 have a relatively small amplitude,
much less than that of trigger waves or Turing structures,
and exhibit roughly equal widths of the dark and bright
stripes. We never observed a solitary propagating wave
under the conditions of these experiments [fd near the
percolation threshold (where the ratio of the diffusion co-
efficient of oil—soluble to that of water—soluble species
is the largest) and chemical composition near the Hopf
bifurcation].

Starting from a reduced form of the Oregonator model
[11] of the BZ reaction, we have developed a four-variable
model:

≠x�≠t � �x 2 x2 2 fz�x 2 q���x 1 q� 2 bx 1 s��´

1 DxDx , (1)

≠z�≠t � x 2 z 1 gu 2 az 1 DzDz , (2)

≠s�≠t � �bx 2 s 1 xu��´1 1 DsDs , (3)

≠u�≠t � �az 2 gu��´2 1 DuDu , (4)

where x and z are dimensionless concentrations of an acti-
vator (HBrO2) and a catalyst (ferriin). If b � g � a � 0,
Eqs. (1) and (2) reduce to the Oregonator model [11];
f and q are parameters, q ø 1, and 1 , f , 3. The
additional variables, s and u, represent an inactive form
of the activator (Br2O4) and Br2, respectively, which
are both soluble in the oil phase and diffuse rapidly:
Ds ¿ Dx, Du ¿ Dz, Du � Ds, Dx � Dz. They may be
thought of as providing a long-range positive and negative
feedback, respectively. The species u produces s [xu term
in Eq. (3)] via a chain of reactions (Br2 1 MA ! Br2,
Br2 1 Z ! Br≤, Br2 1 MA≤ ! Br≤, Br≤ 1 O2 !

BrO2
≤, BrO2

≤ 1 BrO2
≤ ! B2O4). The corresponding

term, 2xu, is omitted from Eq. (4), since x ø g.
Although there are no direct reactions that transform
Br2 �u� into catalyst �z� and vice versa, we introduced
these reactions instead of the actual reactions, such as
Br2 $ Br2, because the inhibitor Br2 is not explicitly
included in our model, though its concentration, y, is
proportional to z: y � fz��q 1 x� [11]. Parameters ´,
´1, and ´2 specify the ratios between the time scales of x,
s, and u, respectively, and z.

We numerically integrated model (1)–(4) in the case
of finite wavelength instability [the Jacobian matrix has
two real, negative eigenvalues and one pair of complex
eigenvalues lk with positive real part, Re�lk� � ak, and
nonzero imaginary part, Im�lk� � vk, for some k, and ak

has a positive maximum at the characteristic wave number
k0 fi 0] for the four combinations of the signs of ak at
k � 0 and dvk�dk at k � k0 (see Fig. 2a): (a1) ak . 0,
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FIG. 2. Dispersion curves for model (1)–(4) (a),(b). (a)
Curves 1–4 (real parts) and 1v 4v (imaginary parts) cor-
respond to cases (a1), (b2), (c3), and (d4), respectively.
Curves 1v 4v are shifted down by 0.97, 0.92, 1.245, and
1.17, respectively. Curves 3 and 4 are multiplied by 5. Pa-
rameters: (a1)–(c3) Dx � Dz � 0.01, (d4) Dx � Dz � 0.015;
(a1),(b2),(d4) Du � Ds � 1, (c3) Du � Ds � 0.9; (a1),(b2)
q � 0.0015, (c3),(d4) q � 0.0033; (a1),(b2) f � 1.4, (c3),(d4)
f � 1.5; (a1) ´ � 0.34, (b2) ´ � 0.36, (c3) ´ � 0.4, (d4)
´ � 0.385; (a1),(b2) ´1 � 1.4, (c3) ´1 � 3.5, (d4) ´1 � 3.2;
(a1),(b2) ´2 � 0.006, (c3) ´2 � 0.0016, (d4) ´2 � 0.0024;
(a1) a � 6, (b2) a � 7, (c3) a � 6.2, (d4) a � 6.3; (a1),(b2)
b � 0.32 (c3) b � 0.28, (d4) b � 0.275; (a1),(b2) g � 0.2,
(c3),(d4) g � 0.1; (a1),(b2) x � 0, (c3) x � 0.005 95, (d4)
x � 0.004. (b) q � 0.0033, f � 1.5, (1) ´ � 0.297, (2)
´ � 0.3, ´1 � 2.1, ´2 � 0.003, (1) a � 10, (2) a � 11,
b � 0.29, g � 0.1, (1) x � 0.000 252, (2) x � 0.000 21,
Dx � Dz � 0.012, (1) Du � 0.85, (2) Du � 0.7, Ds � 1.
Curves 1v and 2v (imaginary parts) are shifted down by 1.155
and 1.125, respectively. Lines 1s and 2s show slope �dv�dk�
at k0. (c),(d) Space-time plots (Dt � 10, length � 100) after
initial transient period t0 for cases 1 and 2, respectively, shown
in (b). 1D simulations initiated with local perturbation at one
end (no-flux boundary conditions) at t � 0, t0 � 2000 for (c)
and t0 � 1000 for (d).

dvk�dk . 0, (b2) ak , 0, dvk�dk . 0, (c3) ak . 0,
dvk�dk , 0, and (d4) ak , 0, dvk�dk , 0.

Outwardly propagating packet waves (moving away
from the perturbed region) were found whenever
dvk�dk . 0 (Fig. 3) for any type of initial perturbation
(single point, narrow strip close to or far from the bound-
ary). Note that with zero-flux boundary conditions, packet
waves may transform into standing waves (see also [12])
after reflection from the boundary.

What are the properties of packet waves? First, a single
wave cannot exist alone. Waves emerge at one end and
disappear at the other end of the wave packet (see Figs. 1a
and 3a), which slowly expands and can occupy the entire
medium after a very long period of time (thousands of
oscillation periods).

Packet waves have small amplitude. Consider the re-
duced Eq. (1) with b � s � 0 at constant z. For fz small
088303-2



VOLUME 88, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 25 FEBRUARY 2002
FIG. 3. Computer simulation of Eqs. (1)–(4) for positive dis-
persion dvk�dk in cases (a1) (a) and (b2) (b)–(d). (a),(d)
Size � 150 3 100, (c) size � 200 3 100. Narrow (L�100, L �
150) left vertical stripe was perturbed in (a) and (d). (b) Con-
centration profile along the horizontal line [continuation of (c)]
at time �t � 500� when two packets collide. In (b) dark (light)
line corresponds to activator (catalyst).

[q��3 2 81�2� , fz ø 1; q��3 2 81�2� is the minimum
value of fz that gives bistability], the equation has two
stable (x1 and x3) and one unstable (x2) steady states, with
q , x1 , x2 , x3 , 1; x2 � fz 2 q, x3 � 1. Trigger
waves have an amplitude of about x3, or at least signifi-
cantly larger than x2. In our case, x oscillates around
the steady state of the full system (1)–(4), xSS � q� f 1

1��� f 2 1 1 q�, which is close to x2. Collision of two
wave packets leads to an increase in the amplitude of os-
cillations at the point (line) of collision (see Fig. 3b), in
contrast to the behavior of trigger waves.

The dark and light stripes in our packet waves have ap-
proximately equal widths, reflecting the fact that at each
spatial point we have nearly sinusoidal rather than relax-
ation oscillations.

The velocity of waves within a packet, npw, which is
actually a phase velocity, is given by

npw � v0�k0 . (5)

Although the velocities of packet and phase waves have
the same dependence on v0 and k0, the velocity of packet
waves depends on the diffusion coefficients, and packet
waves are unable to pass through an impermeable barrier
as phase waves can. The velocity npw significantly exceeds
the velocity of the trigger front, ntf, in the corresponding
bistable subsystem:

≠x�≠t � �x 2 x2 2 kout�x 2 q���x 1 q� 2 bx 1 s��´

1 DxDx , (1r)

≠s�≠t � �bx 2 s��´1 1 DsDs , (3r)

where the pseudorate constant kout replaces fz. When
kout � q��3 2 81�2�, ntf reaches its maximum. We then
obtain in case (a1) k0 � 0.61, v0 � 1.01, and npw � 1.7,
while ntf � 1.005. In case (c3), k0 � 0.955, v0 � 1.27,
npw � 1.33, and ntf � 0.7566. The velocity of the wave
packet (group velocity) depends, in general, on jdvk�dkj
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and is significantly smaller than v0�k0 in the cases con-
sidered here.

In cases (b2) and (d4), when ak , 0, the final patterns
are standing waves like those shown in Fig. 4d. In the for-
mer case, the transient period from initial perturbation to
final pattern may be as long as several thousand oscillation
periods, depending on the shape of the initial perturbation,
the geometry of the reaction area, and the parameters of the
system. During the transient period, we observed irregu-
lar waves enveloped by packets of plane waves (Fig. 3c)
like those in the experiment shown in Fig. 1b. In this
computer simulation, two identical narrow vertical strips
adjacent to the left and right borders were slightly per-
turbed. First, a packet of plane waves developed. Then,
after several hundred oscillation periods T , irregular, bro-
ken waves emerged near the boundaries (no flux boundary
conditions). The wave patterns from the left and right sides

FIG. 4. Computer simulation of Eqs. (1)–(4) for negative dis-
persion dvk�dk. Dispersion curves for simulations (a), (d), and
(f ) correspond to cases (c3), (d4), and Fig. (4e), respectively.
Dispersion curve for simulations (b) and (c) is similar to that
of cases (c3), but with slightly different parameters: (c),(e)
q � 0.0033, (c),(e) f � 1.3, (c) ´ � 0.383, (e) ´ � 0.384,
(c),(e) ´1 � 3.25, (c),(e) ´2 � 0.001 15, (c),(e) a � 12, (c),(e)
b � 0.3, (c),(e) g � 0.15, (c),(e) x � 0.003 575, (c),(e) Dx �
Dz � 0.015, (c),(e) Du � 1, (c) Ds � 0.8, (e) Ds � 0.6. (a)
Size � 100 3 100, (b),(f) R � 50, (c) size � 60 3 60, (d)
R � 60. (a),(d),(f) perturbation at center, (b) two points sym-
metric about center (at x � 6R�2) were perturbed, (c) random
initial conditions.
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were not identical, though the initial perturbations were
the same.

For case (b2), we also obtained traveling waves moving
in opposite directions in adjacent areas (Fig. 3d), as in the
experiment in Fig. 1c. Initially, a narrow vertical strip was
perturbed at the left side. As in Fig. 3c, a packet of plane
waves developed, followed by chaotic waves. After several
hundred T , new plane waves moving in opposite directions
evolved from the irregular waves, while the initial wave
packet shifted to the right (Fig. 3d). Note the similarity
between the experiments shown in Figs. 1b and 1c and the
simulations presented in Figs. 3c and 3d.

The behavior of system (1)–(4) when dvk�dk , 0 is
shown in Fig. 4. Negative dispersion (which was found
only for x fi 0) combined with Hopf instability (ak . 0 at
k � 0) gives rise to inwardly propagating waves that move
toward the point (line) of perturbation. In the BZ-AOT
system, when antispirals occur, the frequency of bulk os-
cillations, fbo, is larger than the frequency of antispirals,
fas, i.e., vH � vk�0 . v0, as in the case of negative
dispersion. Propagating concentric waves that can trans-
form into inwardly rotating spirals have been obtained for
a point perturbation (Fig. 4a). When we perturbed at two
points (Fig. 4b), we obtained accelerating waves emerg-
ing between two wave basins, as seen in experiments on
antispirals [7]. When a vertical wave between two basins
splits, two new waves move in opposite directions, and
other waves from above and below rush into the free space
left by these waves, because each point of the oscillatory
medium is oscillating at frequency v0. These accelerating
waves may thus be regarded as phase waves and may have
very high velocity, while the velocity of plane waves within
a packet is determined by Eq. (5). With random initial con-
ditions, we find waves with negative curvature and the cen-
ters of their arcs situated at the boundary (cf. simulation in
Fig. 4c and experiment in Fig. 1d).

To examine the mechanism of formation of packet waves
we explored model parameters that yield the dispersion
curves shown in Fig. 4e. There is a band of k at which
ak , 0, while ak . 0 in bands at smaller and at larger
k. In this case, we find (Fig. 4f ) two separate, overlap-
ping patterns: small (0.002) amplitude standing waves with
short wavelength (l � 7.3) and large (0.013) amplitude
phase waves with long wavelength (l � 30), oscillating
about a mean concentration x of about 0.087. The standing
waves maintain their shape and frequency during propa-
gation of the phase waves. This simulation suggests that
inwardly propagating packet waves arise from bulk oscil-
lations (positive ak at k � 0), and then the mechanism of
mode selection chooses the wavelength with maximum ak

if and only if ak . 0 between k � 0 and k � k0.
To assess whether the sign of dv�dk at k � k0 or

the difference, vH 2 v0, between the frequencies of
bulk and local oscillations determines the direction of
wave propagation, we performed the simulations shown
in Figs. 2b–2d. In both cases (1) and (2) in Fig. 2b,
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vH 2 v0 . 0, but the signs of dv�dk differ. We
see that inwardly propagating waves occur only when
dv�dk , 0.

We have focused here mainly on cases when the group
velocity is significantly smaller than the velocity of packet
waves. However, the opposite situation can also occur.
If dvk�dk � v0�k0 . 0, outwardly propagating packet
waves are replaced by a single solitonlike wave. A more
interesting situation can arise when dvk�dk is negative
and jdvk�dkj � v0�k0. When jdvk�dkj ø v0�k0,
individual waves within a packet appear to propagate
from a sink to the source. Causality is not violated,
however, since the packet of waves propagates outward.
If jdvk�dkj � v0�k0, the initial perturbation may be
trapped in the form of local oscillations, and wave propa-
gation may be inhibited. This important case, potentially
useful for building a chemical memory, will be studied
separately in future work. Also, a more general treatment
of packet waves in the context of Ginzburg-Landau
equations would be extremely useful.

The agreement between the experiments and the simu-
lations suggests that our model reflects the key features of
this system. The finite wavelength instability gives rise
to packets with a well defined velocity, v0�k0, for plane
waves. If, in addition, dvk�dk , 0 at the characteristic
wave number k0, the familiar outwardly propagating waves
are transformed to the inwardly propagating waves found
in the BZ-AOT system in the form of antispirals and anti-
pacemakers [7]. To our knowledge, this Letter presents
the first observation of packet waves in a reaction-diffusion
system.
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