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The random energy model (REM) has become a key reference model for glassy systems. In particu-
lar, it is expected to provide a prime example of a system whose dynamics shows aging, a universal
phenomenon characterizing the dynamics of complex systems. The analysis of its activated dynamics
is based on so-called trap models, introduced by Bouchaud, that are also used to mimic the dynamics
of more complex disordered systems. In this Letter we report the first results that justify rigorously the
trap model predictions in the REM.
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A key concept that has emerged over the past years in
the study of dynamical properties of complex systems is
that of “aging.” It is applied to systems whose dynamics
are dominated by slow transients towards equilibrium (see
[1] for an excellent review). This phenomena is manifest
in a huge variety of systems, such as glasses, spin glasses,
biomolecules, polymers, plastics, and has obvious practical
implications in real-world applications.

When discussing aging dynamics, it is all important to
specify the precise time scales considered in relation to the
volume. The nonactivated regime is now well explored
[2]. This note gives the first rigorous results for the ac-
tivated aging regime, which corresponds to much longer
time scales.

In “nonactivated dynamics” one considers the infinite
volume limit at fixed time t, and then analyzes the ensuing
dynamics as t tends to infinity. The typical setting where
such a program has been carried out is Langevin dynamics
of spherical mean field spin glasses, such as the p-spin
Sherrington-Kirkpatrick (SK) model [3]. Note that even in
this setting multiple and even infinitely many time-scales
may be observed [e.g., in the SK model or the (2 1 4)-spin
spherical SK model [1] ]. In this context, mathematically
rigorous results have been obtained recently in [4] only for
the p � 2 spherical SK model.

Slow dynamics of complex systems is often attributed
to the presence of “thermally activated” barrier crossing
in the configuration space [5]. For instance, the standard
picture of the spin glass phase typically involves a highly
complex landscape of the free energy function exhibiting
many nested valleys organized according to some hierar-
chical tree structure (see, e.g., [6,7]). To such a picture
corresponds the heuristic image of a stochastic dynamics
that, on time scales that diverge with the size of the system,
can be described as performing a sequence of “jumps” be-
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tween different valleys at random times whose rates are
governed by the depths of the valleys and the heights
of connecting passes or saddle points. To capture these
Goldstein-type features, Bouchaud and others [1,8–11]
have introduced an interesting ansatz, i.e., a mapping of
the dynamics onto “trap models.” These trap models are
Markov jump processes on a state space that simply enu-
merates the valleys of the free energy landscape. While
this picture is intuitively appealing, its derivation is based
on knowledge obtained in much simpler contexts, such as
diffusions in finite dimensional potential landscapes ex-
hibiting a finite number of minima. In the systems one is
interested in here, however, both dimension and number of
minima are infinite or asymptotically growing to infinity.

Since trap models have become a key tool to model
these dynamical phenomena in a large variety of systems,
it is an important and interesting question to understand
whether, how, and in which sense the long time dynamics
of disordered systems such as spin glasses can really be
described by trap models, and, in particular, to elucidate
the precise time scales to which these models refer. To
answer this question requires, of course, the study of the
actual stochastic dynamics of the full system at diverging
time scales, which is, in general, a very hard problem.

In this Letter, we report on the first rigorous results
linking the long-time behavior of Glauber dynamics to a
trap model in the context of the “simplest spin glass” [12]
model, the random energy model (REM) [13,14]. While
this model is surely far from “realistic,” it offers a num-
ber of features that are “typical” for what one expects in
real spin glasses, and its analysis involves already a good
number of the problems one would expect to find in more
realistic situations. The main advantage we will draw from
this is, of course, the fact that the equilibrium properties
of this model are perfectly understood.
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The REM.—We recall that the REM [13,14] is defined
as follows. A spin configuration s is a vertex of the hyper-
cube SN � �21, 1�N . We define the family of independent
and identically distributed standard Gaussian random vari-
ables �Es�s[SN . We define a random (Gibbs) probability
measure on SN , mb,N , by setting

mb,N�s� �
e2b

p
N Es

Zb,N
, (1)

where Zb,N is the normalizing partition function.
It is well known [13,14] that this model exhibits a phase

transition at bc �
p

2 ln2. For b # bc, the Gibbs mea-
sure is supported, asymptotically as N " `, on the set of
states s for which Es � 2

p
N b, and no single con-

figuration has positive mass. For b . bc, on the other
hand, the Gibbs measure gives positive mass to the extreme
(minimal) elements of the order statistics of the family Es ;
i.e., if we order the spin configurations according to the
magnitude of their energies such that

Es�1� # Es�2� # Es�3� # · · · # Es�2N � , (2)

then for any finite k the respective mass mb,N �s�k�� will
converge, as N tends to infinity, to some positive ran-
dom variable nk. In fact, the entire family of masses
mb,N�s�k��, k [ IN will converge to a random process
�nk�k[IN , called Ruelle’s point process [8,15].

So far, the fact that s are vertices of a hypercube has
played no role in our considerations. It will enter only in
the definition of the dynamics of the model. The dynamics
we consider is a continuous time Glauber dynamics s�t�
on SN with transition rates,

pN �s ! h� � e1b
p

N Es ,

when s and h differ by a single spin flip. Note that the
dynamics is also random; i.e., the law of the Markov chain
is a measure valued random variable on V that takes values
in the space of Markov measures on the path space S

IN
N .

We will mostly take a quenched point of view; i.e., we
consider the dynamics for a given fixed realization of the
disorder.

It is easy to see that this dynamics is reversible with re-
spect to the Gibbs measure mb,N . One also sees that it
represents a nearest neighbor random walk on the hyper-
cube with traps of random depths.

The REM-like trap model.—The idea suggested by the
known behavior of the equilibrium distribution is that this
dynamics, for b . bc, will spend long periods of time
in the states s�1�, s�2�, . . . , etc. and will move “quickly”
from one of these configurations to the next. Based on
this intuition, Bouchaud et al. [8,9] proposed the “REM-
like” trap model: Consider a continuous time Markov
process ZM whose state space is the set SM � �1, . . . , M�
of M points, representing the M “deepest” traps. Each of
the states is assigned a random variable ´k (representing
minus the energy of the state k), which is taken to be
exponentially distributed with rate one. If the process is in
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state k, it waits an exponentially distributed time with mean
proportional to e´ka , and then jumps with equal probability
in one of the other states k0 [ SM .

This process can be analyzed using techniques from re-
newal theory. The point is that, if one starts the process
from the uniform distribution, it is possible to show that the
counting process, c�t�, that counts the number of jumps in
the time interval �0, t�, is a classical renewal (counting)
process [16]; moreover, as M " `, this renewal process
converges to a renewal process with a deterministic law
for the renewal time with a heavy-tailed distribution whose
density is proportional to t2121�a , where a � b�bc.

The quantity that is used to characterize the “aging”
phenomenon is the probability PM�t, s� that during a time
interval 	t, t 1 s� the process does not jump. Bouchaud
and Dean [9] showed that, for a . 1,

lim
M"`

PM�t,s�
H0�s�t�

� 1 ,

where the function H0 is defined by

H0�w� �
1

pcosec�p�a�

Z `

w
dx

1
�1 1 x�x1�a

. (3)

Note that H0�w� behaves similar to 1 2 Cw121�a , for
small w, and similar to Cw21�a for large w.

Our purpose is to show, in a mathematically rigorous
way, how and to what extent the REM-like trap model
can be viewed as an approximation of what happens in
the REM itself. To this end, we first introduce the set
TM � �s�1�, . . . , s�M�� of the first M states defined by the
enumeration (2). Ideally, we would like to start with our
original process s�t� and construct a new process YM as
follows. Let t1, t2, . . . , tn, . . . be the sequence of times at
which s�t� visits different elements of the (random) set
TM . Then set

XN ,M�t� �
MX

k�1

k1s�k��s�tn�1tn#t,tn11
,

i.e., X�t� takes the value k during time intervals at which
the process s�t� “travels” from s�k� to the next element of
this set. We would like to say that Bouchaud’s process ZM

approximates, after an N and an M dependent rescaling of
the time, this process X, if N and M are large, i.e., that in
some appropriate sense, for some function c�N , M�,

ZM �t� � XN,M ���c�N, M�t��� ,

when first N , then M, and finally t tend to infinity. This
problem involves two main assumptions: (i) The process
jumps with the uniform distribution from any state in TM

to any of the other states in TM . (ii) The process ob-
served on the set TM is, at least asymptotically, a Markov
process; in particular, the times between visits of two
different states in TM are asymptotically exponentially dis-
tributed. While it appears intuitively reasonable to accept
these assumptions, (a) they are not at all easy to justify and
(b) the second assumption is not even correct. In fact,
087201-2



VOLUME 88, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 25 FEBRUARY 2002
we will see that such properties can be established only
in a very weak asymptotic form, which is, however, just
enough to imply that the predictions of Bouchaud’s model
apply to the long-time asymptotics of the process.

We will now present our main results. The full proofs
of these results are given in [17,18]. We define instead of
the set TM introduced above the sets, for E [ IR,

T � TN �E� � �s [ SN jEs # 2uN �E�� ,

where

uN �x� �
p

2N ln2 2
x

p
2N ln2

2
ln�N ln2� 1 ln4p

2
p

2N ln2
.

We will call this set the “top.” Note that TN �E� �
TjTN �E�j.

Our first result concerns just the “motion” of the process
disregarding time. Let j1, . . . , jjT�E�j be an enumeration of
the elements of T �E�. Now define (for fixed N and E) the
stochastic process X� with state space �1, . . . , jT�E�j� and
discrete time � [ IN by

Y
�N�
� � X�t�� . (4)

It is easy to see that Y
�N�
� is a Markov process whose tran-

sition probabilities p�i ! j� are nothing but the probabili-
ties that the original process s�t� starting at ji hits T first
in the point jj. It will be convenient to fix the random size
of the state space of this process by conditioning. Thus,
set PM�?� � P�?jjT �E�j � M�.

It is clear that under this law the processes Y
�N�
� are

Markov chains. The first result that is proven in [17] is
that, if b�

p
2 ln2 . 1, the transition probabilities of this

chain converge, as N " `, to the uniform law:

p�
M�i ! j� �

(
1

M21 if i fi j
0, if i � j .

In other words, the process that records the visits of the
initial chain on the sites of TN�E� is asymptotically the
same as in the trap model.

The second result concerns two key quantities: T �h�,
the mean time to reach TN �E�nh starting from any
point h [ SN , and Z�h, h̄�, the mean time to reach
h̄ [ TN�E�nh before any other point in TN�E�. First, one
shows that, if a . 1, for h [ TN�E�, Z�h, h̄� � T �h�;
i.e., the traveling time between two points in TN �E�
depends only on the starting point. Second, T �h� are
estimated very precisely as

T �h� �
M

M 2 1
	eb

p
NEh 1 WN ,E� ���1 1 O�1�N���� ,

(5)

where WN ,E is a random variable of mean value,

IEWN ,E �
e2b

p
N uN �E�

a 2 1
,

and whose standard deviation is negligible compared to the
mean, as E tends to 1`. If a , 1, on the other hand, the
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estimate on T �h� becomes independent on h as well and
we get

T �s� �
M

M 2 1
eN�b2�21ln2����1 1 O�1�N���� .

Remark: We see that for E very large, WN ,E �
eb

p
N uN �E� represents a natural time scale for the process

on T�E�. Thus (5) implies that for all s ” T�E� the mean
time of arrival in the top is proportional to eb

p
NuN �E�.

On the other hand, there exists h [ T�E� such that the
mean time of the first exit from h, which is eb

p
N Eh , is

just of this order. Thus, the slowest times of exit from a
state in T�E� are of the same order as the time it takes
to reach T�E�. This can be expressed by saying that on
the average the process takes a time t to reach states
that have an exit time t. This is a first manifestation of
the aging phenomenon. In contrast, if a , 1, for all
s [ T�E�, T �s� ø suph[SN

T �h�, and thus the time
spent in the top states is irrelevant compared to the time
between successive visits of such states. Thus, we see a
clear distinction between the high and the low temperature
phase of the REM on the dynamical level. Notice that, as
has been observed in [19], the dynamical phase transition
is not accompanied by a qualitative change in the spectral
gap, which in all cases is related to the largest exit times.
For related results on the high temperature dynamics, see
also [20].

The fact that the mean times of passage from a state
h [ T�E� to another state h̄ [ T�E� are asymptotically
independent of the terminal state h̄ confirms to some extent
the heuristic picture of Bouchaud. Indeed, if in addition we
added the hypothesis that the process observed on the top
is Markovian, this would imply that the waiting times must
be exponentially distributed with rates independent of the
terminal state and given by Z�h, h̄�. This, however, cannot
be justified. The reason for the failure of the Markov
properties can be traced to the fact that the time spent
outside of T �E� when traveling between two states of T�E�
cannot be neglected in comparison to the waiting time in
the starting point, which in turn is a manifestation of the
absence of a true separation of time scales.

We now turn to a more precise analysis of the aging
phenomenon.

The natural generalization of Bouchaud’s correlation
function PM�t, s� is the probability that the process does
not jump from a state in the top to another state in the top
during a time interval of the form 	n, n 1 m�. There is
some ambiguity as to how this should be defined precisely,
but the most convenient definition is to define Ps�n, m�
as the probability that the process starting at time 0 in s

does not jump during the time interval 	n, n 1 m� from
one state in T to another state in T .

Of course we still have to specify the initial distribution.
To be as close as possible to Bouchaud, the natural choice
is the uniform distribution on TN�E� that we will denote
by pE . The natural correlation function is then
087201-3
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P�n, m� �
1

jTN �E�j

X
s[TN �E�

Ps�n, m� .

The following theorem establishes the connection to the
trap model.
Theorem. Let b .

p
2 ln2. Then there is a sequence

cN ,E � exp	b
p

N uN �E�� such that, for any e . 0,

lim
t,s"`

lim
E"`

lim
N "`

P

∑Ç
P�cN ,Et, cN ,Es�

H0�s�t�
2 1

Ç
. e

∏
� 0 ,

where H0 is defined in (3).
Remark: Note that the rescaling of the time by the

factor cN ,E ensures that we are observing the system first
on the proper time of equilibration as N goes to infinity,
and that then, as E tends to infinity, we measure time on
a scale at which the equilibration time diverges. Thus,
the trap model describes the large time asymptotics on the
“last scale” before equilibrium is reached. This is to be
contrasted to the other extreme where the infinite volume
limit is taken with a fixed time scale, as in [2,3].

The proof of this theorem is based on the techniques of
[21,22]; it is rather involved and is the main content of [18].
It may be instructive to see a brief outline of our approach.
Basically, the idea is to mimic the proof in the trap model
and to set up a renewal equation. Now it is easy to derive a
renewal equation for the quantities Ps�n, m�. However, in
contrast to the situation of the trap model, it is not possible
to obtain a single closed equation for P�m, n�. This means
that we actually have to study a system of renewal equa-
tions which renders the proof rather complicated. The key
ingredients then are precise estimates of the Laplace trans-
forms of the probability distributions entering the renewal
equations in the complex plane. What makes the final re-
sult emerge is then the fact that, in the neighborhood of
the origin (which corresponds to large times), the Laplace
transforms have almost the desired properties that would
lead to such a closed equation. This makes it possible to
employ perturbation expansions to prove the theorem.

Remark: We conclude the paper with a remark on the
role of the particular choice of the transition probabilities
(1) depending only on starting points. Clearly, these favor
the proximity to Bouchaud’s model. However, our reason
to choose them is that they avoid having to solve the prob-
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lem of determining very precisely the barrier heights be-
tween two points in TN , which is in general a tremendous
random geometric problem to which we have no answer. It
is possible, although not certain, that different choices of a
reversible dynamics might lead to different “trap models,”
all of which should, however, show aging.

We thank J.-Ph. Bouchaud, L. Cugliandolo, and J. Kur-
chan for helpful discussions and encouraging comments.
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