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Hidden Coherence Along Space-Time Trajectories in Parametric Wave Mixing
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We show theoretically that the waves generated through the generic parametric three- or four-wave-
mixing processes exhibit, as a general rule, a hidden coherence characterized by skewed coherence lines
along specific space-time trajectories. Our study generalizes the concept of coherence in the sense that
these previously unrecognized coherent states cannot be described through the standard definitions of
spatial and temporal coherence.
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Parametric three- and four-wave-mixing processes are
ubiquitous in physical sciences. They generally take place
in weakly nonlinear media characterized by either qua-
dratic or cubic nonlinearities and are thus encountered in a
large variety of subfields of physics such as plasma physics,
acoustics, nonlinear optics, and hydrodynamics [1]. In par-
ticular, parametric wave mixing was recently shown to be
the key physical mechanism underlying the properties of
Fermi resonances in multilayer superlattices [2], chiral liq-
uid susceptibilities [3], dipolar spin waves at microwave
frequencies [4], as well as interacting Bose-Einstein con-
densates [5]. Parametric wave mixing also makes possible
coherent matter-wave amplification through the controlled
interaction between a pair of light waves and a pair of mat-
ter waves [6]. Of primary importance in practice are the
wave-mixing configurations in which one (or two, in the
case of four-wave mixing) pump wave parametrically am-
plifies daughter waves that are initially incoherent (e.g., at
the noise level). The fundamental problem is then to deter-
mine whether the initially incoherent daughter waves may,
or not, evolve towards a coherent state during the paramet-
ric generation process.

In this Letter, we analyze mathematically and numeri-
cally the spatiotemporal coherence properties of the para-
metric generation and show that the daughter waves evolve,
as a rule, to a specific state that contains a hidden coher-
ence, i.e., a coherent state that can not be identified by
means of the standard concepts of coherence theory. In
optics, which constitutes the natural context to discuss this
new coherent state, two distinct concepts of coherence are
found [7]: temporal coherence refers to the ability of a field
to interfere with a delayed (but not spatially shifted) ver-
sion of itself, whereas spatial coherence refers to the ability
of the field to interfere with a spatially shifted (but not de-
layed) version of itself. As we shall see, this dichotomous
picture of coherence fails to describe the novel state of co-
herence revealed by our study of parametric wave mixing.
Indeed, our analysis reveals that the parametric interaction
generates fields that are self-correlated along specific spa-
tiotemporal trajectories. In other words, the coherence of
the fields is neither spatial nor temporal, but skewed in the
space-time reference frame.
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We present our theory in the context of nonlinear optics
because parametric generation in optical media is readily
accessible and thus constitutes an ideal test bed for the ex-
perimental verification of our predictions. Moreover, a dis-
tinguished feature of nonlinear optics with respect to other
disciplines is the presence of noteworthy quantum effects
that arise naturally from quantum fluctuations in the pro-
cess of parametric generation. In this regard, our paper
is relevant to quantum imaging [8], a rapidly evolving re-
search field that deals with the concept of quantum patterns
in optical parametric oscillators and amplifiers [9].

Let us consider the three- and four-wave-mixing pro-
cesses in their linear regime of interaction, where the
depletion of the pump waves may be neglected. The propa-
gation of the two daughter waves of frequencies v1,2 and
wave numbers k1,2 is usually studied through their slowly
varying envelopes A1,2 that obey the following linear cou-
pled evolution equations:

D1A1 � kA�
2, D2A2 � kA�

1 , (1)

where D1 � ≠z 1 w≠t 1 r≠y 2 ih1≠yy 2 iD and D2 �
≠z 2 w≠t 2 r≠y 2 ih2≠yy 2 iD. The parameters w �
�y21

1 2 y
21
2 ��2 and r � � r1 2 r2���y1 1 y2� rep-

resent, respectively, the amount of velocity difference
between the daughter waves A1,2 along the longitudinal
z and transverse y axes, where v1,2 � �y1,2, r1,2� are
the longitudinal and transverse components of the group
velocities of A1,2. The symmetric form of D1 and D2
with respect to these velocities is obtained by writing the
equations in the reference frame traveling at the average
velocity, along both the longitudinal and transverse
axes. The parameters h1,2 � 1��2k1,2� are the diffraction
coefficients of both waves and the parameter k is the
nonlinear coupling efficiency of the wave-mixing process.
The parameter D represents the nonlinear phase shift,
proportional to the pump power, that the daughter waves
undergo in the case of a four-wave-mixing process.

To investigate the coherence properties of the daugh-
ter waves A1,2 during the generation process, we shall
determine the spatiotemporal autocorrelation functions
Ci�z; t, y� � �Ai�z, t0 1 t, y0 1 y�A�

i �z, t0, y0�� (i � 1, 2)
(where the brackets denote integration over t0 and y0).
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Let us recall that the spatial and temporal widths of the
autocorrelation function Ci�z; t, y� represent the degrees
of spatial and temporal coherence of the field Ai . To
calculate the autocorrelation functions Ci�z; t, y� it is
convenient to resort to the standard Green’s function
approach [10] that provides the general solution of Eq. (1)
in the following form:

A1 � kG � A�
20 1 g1 � A10 , (2a)

A2 � kG� � A�
10 1 g�

2 � A20 , (2b)

where � denotes the convolution product with re-
spect to the spatial y and temporal t variables, and
Ai0 � Ai�z � 0, t, y� (i � 1, 2) are the initial field distri-
butions. One can easily show that the Green’s function
G satisfies D1D�

2G 2 k2G � d�z, t, y�, where d�z, t, y�
is the 3D Dirac distribution, while the functions g1,2 are
simply deduced from G through g1 � D�

2G, g2 � D1G .
The Green’s function is given by the Fourier expansion

G�z; t, y� ~
ZZ

Re2
exp�g�v, q�z 1 i�vt 1 qy�� dq dv ,

(3)

with the dispersion relation g�v, q� � 2idq2 1 �k2 2

w2�v 1 rq 1 D�w 2 sq2�2�1�2, where r � r�w, d �
�h1 2 h2��2, s � h�w, and h � �h1 1 h2��2. Since
we are interested in the long term evolution of the daughter
waves, the integral (3) may be calculated for large values
of z by the steepest descent method [10]

G ~
exp�kz 2 t2�t2

c 1 iDt�w�p
2i4�st 2 dz�

exp

∑
2i

� y 2 rt�2

4�st 2 dz�

∏
,

(4)

where we introduced the time tc � w�2z�k�1�2 that below
will appear to have the physical meaning of a characteris-
tic correlation time. Considering Eqs. (2), we can easily
express the autocorrelation functions Ci�z; t, y� in terms of
the autocorrelation of the Green’s function CG �z; t, y� �
�G�z; t0 1 t, y0 1 y�G��z; t0, y0�� and the autocorrelation
Ci�z � 0, t, y� of the initial fields [10], which, for sim-
plicity, we assume to be Gaussian correlated [i.e., C1 �
C2 � C0�t, y� � exp�2y2�l2

0 2 t2�t2
0 ���pl0t0�, l0 and t0

being the initial correlation length and time]:

Ci � 2k2CG � C0 �i � 1, 2� . (5)

Let us first discuss the coherence properties of A1,2 in
the limit of zero diffraction parameter, i.e., s � h�w � 0.
From Eq. (5), one obtains

C1,2 ~ exp

∑
2t2 1 y2t2

0�l2
0

2t2
c �1 1 r2t2

0�l2
0 �

∏ exp�2 � y2rt�2

l2
01r2t2

0
�q

p�l2
0 1 r2t2

0 �
. (6)

Notice that this expression tends to exp�2t2��2t2
c ��d�y 2

rt� as l0 and t0 tend to zero. The first factor of C1,2 is
a Gaussian whose spatial and temporal widths increase
with z according to tc � w�2z�k�1�2, which corresponds
to an increase of spatial and temporal coherence. As re-
gards the time dependence, this increase of coherence has
been well known since the pioneering works on paramet-
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ric fluorescence [11]. It is due to the temporal walk-off
between the daughter waves, w, that smoothes down the
initial noisy fields. However, the second factor that ap-
pears in Eq. (6) reveals a previously unrecognized funda-
mental aspect of parametric generation processes. Indeed,
this factor [which tends to d� y 2 rt� as t0, l0 ! 0] lim-
its the extension of the correlation function to a narrow
region surrounding the line y � rt. This means that the
waves A1,2 become coherent along specific spatiotemporal
trajectories parallel to the line y � rt, whereas the initial
incoherence remains unchanged between points that do not
belong to such trajectories.

This unexpected finding has been checked by numerical
simulations of Eq. (1). As shown in Fig. 1a, starting from
noise the fields A1,2 evolve to a peculiar state of coher-
ence characterized by the presence of skewed spatiotem-
poral lines of correlation, in complete agreement with
theory [Eq. (6)]. To interpret physically this phenomenon,
we must consider the fact that the coherence of the fields
appears thanks to the feedback action caused by the walk-
off between the daughter waves [12]. In the framework of
the present spatiotemporal analysis, the concept of walk-
off is generalized to two dimensions and hence has a vec-
tor nature. The feedback action thus takes place between
points belonging to lines that are parallel to the walk-off
vector (i.e., in the direction of the velocity difference
v1 2 v2, as illustrated in Fig. 1b), which explains why
coherence develops only along such lines. Note that the
walk-off direction in the reference frame of the daughter
waves’ average velocity is precisely given by the straight
line y � rt revealed in Eq. (6) as well as in the numerical
simulations (see Fig. 1a).

In the particular limit where the parameter r � r�w
tends to zero (or infinity), the interaction takes place in the
absence of spatial r (temporal w) walk-off, and the trajec-
tory of spatiotemporal coherence becomes parallel to the
temporal (spatial) axis. It is only in these two particular
cases that the coherence properties of the generated fields
can be correctly described by the usual concepts of spatial
and temporal coherence [7]. In the general case of skewed
coherence, the use of these usual concepts would lead to

FIG. 1. (a) Spatiotemporal intensity distribution of jA1�t, y�j at
z � 11k21 in the absence of diffraction (s � 0) for r � 1.95 3
108 m�s, k21 � 1.88 mm, D � 0. The temporal and spatial
units used for the normalization are t0 � w�k � 0.35 ps, L0 �
r�k � 68 mm. (b) Schematic representation of the group ve-
locities v1,2: coherence emerges along lines parallel to v1 2 v2.
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the conclusion that the field exhibits no coherence since it
is neither spatial nor temporal but hidden along spatiotem-
poral trajectories.

Before discussing further this concept of hidden coher-
ence, let us consider the influence of diffraction (s fi 0) on
the coherence of the generated waves. A typical example
of the generated intensity pattern jA1j �t, y� is illustrated
in Fig. 2a. Interestingly, diffraction causes the lines of
coherence to cross each other, whereas they were simply
juxtaposed side by side in the diffractionless case (Fig. 1a).
This observation is in agreement with expression (5) of the
autocorrelation function that may be easily calculated for
s fi 0 through an expansion in powers of t2

0 , which pro-
vides an exact expression in the form of an infinite series
whose leading term is

Cs
1,2�z; t,y� ~

exp�2t2��2t2
c ��q

l2
0 2 4ist

exp

∑
2

� y 2 rt�2

l2
0 2 4ist

∏
. (7)

Figure 2c shows that this autocorrelation function exhibits
an aperture around the direction y � rt, a feature that
naturally reflects the appearance of coherence lines of dif-
ferent slopes in the presence of diffraction, as revealed in
Fig. 2a. For higher values of the diffraction parameter
(s . 700 m2 s21) the aperture of the autocorrelation re-
sults in a drastic reduction of coherence characterized by
specklelike patterns (see Fig. 2b). This effect is naturally
due to the random interferences between the intersecting
uncorrelated spatiotemporal lines whose slopes span the
larger aperture of jCs

1,2�z; t, y�j.

FIG. 2. Intensity distribution jA1�t, y�j for the same parameters
as in Fig. 1a except that s � 210 m2 s21 (a), s � 840 m2 s21

(b). Autocorrelation function [Eq. (7)] jCs
1,2�t, y�j (c), spatiotem-

poral spectrum S�v, q� (d), and respective interference fringe
visibility [Eq. (9)] V �t� (inset: schematic representation of
Young’s experiment) (e), determined for the parameters of (a).
(f) Spectrum S�v, q� obtained below the threshold of the para-
metric instability.
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Let us now study skewed coherence through the analysis
of the spatiotemporal spectra S�z; v,q� of the generated
fields. These spectra can be easily determined from the
autocorrelation function Cs

1,2 [7], which yields

S�z; v, q� ~ exp�2kz 2 t2
c �v 1 rq 2 sq2�2�2�

3 eC0�v, q� , (8)

where eC0�v, q� � exp��2l2
0q2 2 t2

0v2��4� is the Fourier
transform of C0�t,y�. Equation (8) was found to be in ex-
cellent agreement with the spectra calculated numerically
(see Fig. 2d) for a wide range of the parameters r and s.
In particular, the spectra are always localized around the
parabola, v � 2rq 1 sq2, as revealed by Eq. (8).

Let us notice that the spectra span large spatial- and
temporal-frequency bandwidths, Dq and Dv, which, fol-
lowing the standard concepts of spatial and temporal co-
herence, would lead erroneously to the conclusion that the
fields are fully incoherent. But, despite these large band-
widths, the spectra exhibit a fine two-dimensional structure
(i.e., the parabola v � 2rq 1 sq2) that reveals the hid-
den coherence identified above. As s tends to zero, the
spectrum reduces to a straight line of slope 2r, which
naturally corresponds to the spatiotemporal straight coher-
ence lines found above with s � 0 (see Fig. 1).

This discussion reveals that the usual technique that con-
sists of measuring the spatial and temporal spectra of a field
to determine its coherence cannot be used to characterize
the hidden coherence of the generated waves. It is there-
fore important to propose alternative techniques. In what
follows we suggest a simple method aimed at providing
an easy qualitative experimental demonstration of the phe-
nomenon of skewed coherence.

This method is nothing but the classic Young’s inter-
ference experiment. In this perspective, let us calculate
the visibility V of the fringe pattern generated when mak-
ing one of the daughter waves, say A1, pass through two
Young’s pinholes. The visibility is determined by V �t� �
jG1,2�t�j��G1,1�0�G2,2�0��1�2, where G1,2�t� � �A1�t0 1

t, y1�A�
1�t0, y2�� is the mutual coherence function [7],

which can be calculated explicitly by means of the
Green’s function Eq. (4):

V �t� �
exp�2t2��2t2

c ��
�1 1 16s2t2�l4

0�1�4
exp

∑
2

l2
0�a 1 rt�2

l4
0 1 16s2t2

∏
,

(9)

where a � y2 2 y1 is the distance between the two
pinholes and t is the time delay between the two beams
coming from the two pinholes, which is proportional to the
transverse spatial coordinate in the plane of observation of
the fringe pattern [7]. In contrast with the usual symmetric
fringe patterns encountered in Young’s experiments, V �t�
displays an asymmetric shape characterized by a hump
localized in t � 2a�r (see Fig. 2e). This asymmetry is
actually the signature of the presence of skewed lines of
spatiotemporal coherence: It merely reflects the ability of
the daughter wave to interfere with the spatially shifted
083901-3
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version of itself provided it is delayed by an appropriate
quantity determined by the slope r of the spatiotemporal
lines of coherence, i.e., t � 2a�r, as indicated in Eq. (9).
Note that, as the diffraction parameter s increases, the
visibility V �t� of the fringes decreases and spreads in the
observation plane, in agreement with the loss of coherence
observed in the above study of diffraction effects (see
Figs. 2a and 2b).

We draw the reader’s attention to the fact that the ex-
pression of the visibility V �t� [Eq. (9)] is useful to de-
termine the relevant experimental parameters required for
the observation of the asymmetric interference patterns.
More precisely, we considered for the numerical example
of Fig. 2 an experimental configuration similar to that stud-
ied in Ref. [13]. In particular, the values of the parameters
r and s considered in Fig. 2a correspond to a KTiOPO4
crystal operating in the collinear type-II phase-matching
configuration with a spatial walk-off r � 35 mrad and a
temporal walk-off w � 0.18 ps�mm, the injected pump
intensity being I � 250 MW�cm2 for an effective nonlin-
ear susceptibility of d � 5 pm�V and a crystal length of
L � 2.1 cm. According to the numerical simulation re-
ported in Figs. 2(a) and 2(e), the emergence of the skewed
coherence should be easily demonstrated in Young’s ex-
periment with an asymmetric visibility V of up to 55%
(Fig. 2e) in the standard single pass configuration starting
from quantum noise fluctuations.

In summary, by means of an original theoretical treat-
ment we analyzed the coherence properties of the paramet-
ric generation process and showed that the generated waves
exhibit a hidden coherence under the form of skewed spa-
tiotemporal coherence lines. We showed that, despite the
fact that these new coherent states cannot be identified
through the standard concepts of spatial and temporal co-
herence, they can be demonstrated by means of simple
methods such as the Young’s interference experiment. On
the basis of the recent studies on quantum images [8,9],
we can infer that our work can be pursued to explore the
inherent quantum aspects associated with the vacuum field
fluctuations in parametric generation. As an example, fol-
lowing the Langevin treatment of the dissipative para-
metric process driven by quantum fluctuations [9], we
performed numerical simulations below the threshold of
the parametric instability and observed the emergence of
the characteristic parabola [Eq. (8)] in the spatiotemporal
spectrum of the fields (see Fig. 2f). This spatiotemporal
quantum image anticipates the formation of the skewed
lines of coherence above the threshold of the instability.

Besides the context of optics, this work is relevant to
many branches of nonlinear science. For instance, the co-
herence properties of parametrically coupled waves were
shown to play a fundamental role for weakly interacting
083901-4
Bose gases [6], whose autocorrelation functions have been
studied through the measurement of interference fringe
patterns at the Bose-Einstein phase transition [14]. Consid-
ering the four-wave-mixing interaction [5], we may expect
a rearrangement of matter-wave correlations along skewed
lines of coherence, a feature that may be revealed by a
double slit interference experiment [14], as discussed
above for optical waves. Let us also mention the relevance
of our work in the context of plasma physics as regards
the important issue of inertial confinement fusion for
which the coherence properties of the parametric insta-
bilities were shown to be essential for the control of the
confinement process [15].
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