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A controlled interference is proposed to reduce, by two orders of magnitude, the decoherence of a
quantum gate for which the gate fidelity is limited by coupling to states other than the j0� and j1� qubit
states. This phenomenon is demonstrated in an ultracold neutral atom implementation of a phase gate
using qubits based on motional states in individual wells of an optical lattice.
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The controlled manipulation of quantum coherence and
entanglement has fundamental physical interest and pos-
sible revolutionary applications to quantum information
and computing [1]. The rapid development of quantum
information has been stimulated by the discovery of a
quantum factorization algorithm by Shor [2] and by the
realization that, at the rate predicted by Moore’s law, semi-
conductor technologies will soon reach the quantum limit.
In addition to the experimental challenge [3] of realiz-
ing a physical system of many qubits whose evolution
and interaction can be controlled at the quantum level,
fulfilling these promises will require practical ways to
minimize, or at least correct for, decoherence. Error cor-
recting codes [1] provide recovery mechanisms when a
given quantum state is perturbed by noise or unwanted in-
teractions. These codes use redundancy by encoding the
quantum state information into higher dimensional Hilbert
spaces and are therefore expected to introduce additional
complexity. Consequently, it is essential to reduce and con-
trol errors as much as possible for elementary two-qubit
gate operations.

In this Letter, we propose an interference scheme aimed
at improving the fidelity of a conditional phase gate by
canceling excitation to quantum states residing outside the
two-qubit subspace. We describe this quantum control
scheme using the example of ultracold neutral atoms in op-
tical lattices. Nevertheless, due to its general nature, this
interference could be implemented in other proposals of el-
ementary quantum logic devices where a conditional phase
gate is used as one of the necessary building blocks of a
universal quantum computer. These proposals include sce-
narios based on nuclear magnetic resonance [4], trapped
ions [5], cavity quantum electrodynamics [6], and neutral
atoms [7].

A conditional phase gate P�f� induces entanglement be-
tween two qubits by changing the state j11� into eifj11�,
while leaving other states unchanged. In practice, it is of-
ten simpler to implement a phase gate which changes the
states jab� into eifab jab�, where a and b are the qubit labels
0 and 1. This transformation can be reduced to the con-
ditional phase gate P�f�, with f � f00 2 f01 2 f10 1

f11, by using additional single-qubit operations. The case
0031-9007�02�88(7)�077901(4)$20.00
f � p is of particular interest since P�p� together with
two one-qubit Hadamard gates form a controlled-NOT [1].

Our implementation of the phase gate uses qubits based
on the external degrees of freedom of ultracold ground-
state 87Rb atoms in an optical lattice. Linearly polarized
counterpropagating beams from the fundamental and first
harmonic of a CO2 laser produce an intensity gradient op-
tical lattice along the x direction [see Fig. 1(a)] [8]. Along
the other directions, y and z, an independent optical or
magnetic trap is applied. Far from atomic resonance, the
atomic polarizability is frequency independent and the as-
sociated periodic atomic trapping potential along the x di-
rection is a succession of double minima separated by high
barriers [see Fig. 1(b)]. With realistic CO2 laser intensi-
ties, this structure supports a few motional states [9]. A
single 87Rb atom is trapped in each well. The interaction
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FIG. 1. Schematic picture of the neutral-atom optical lattice
implementation. (a) Counterpropagating laser beams of frequen-
cies v and 2v, intensities If and Ih , same linear polarization ê,
and wavelengths lf � 10.6 mm and lh � 5.2 mm. (b) Black
line: Optical lattice potential seen by the neutral atoms in units
of the photon recoil energy 2p2 h̄2�ml

2
f � 130 Hz, where m

is the 87Rb mass. This trapping potential is proportional to the
square of the electric field If cos2�2px�lf� 1 Ih cos2�2px�lh�.
Grey line: Approximate optical potential used in this calcula-
tion. The energies of the first four motional states of a single
atom in the double-well structure are drawn as thin horizontal
lines. The two lowest states are indistinguishable on the scale
of the figure. The left and right wells are denoted by L and R.
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between atoms trapped in different double-well structures
is negligible. Our model is therefore restricted to the two
atoms trapped in a given double well. The confinement
along y and z is assumed to be much stronger than the one
along the x axis, such that during the gate operation the
atoms stay in the lowest vibrational state along the y and
the z directions. We therefore treat only the dynamics of
the two atoms along x.

For numerical convenience, the periodic trapping poten-
tial along x is represented as the lower adiabat of a sys-
tem of two coupled harmonic oscillators shown as the grey
curve in Fig. 1(b). This figure also shows the energies of
the lowest four eigenstates of a single atom trapped in the
double-well potential. The corresponding eigenfunctions
spread over both the left �L� and right �R� wells with ei-
ther even or odd inversion symmetry with respect to x � 0.
When the left and right wells are separated by a high bar-
rier, tunneling is negligible and the atomic motional states
can equally well be represented by wave functions which
are localized in one of the wells. The two lowest motional
states of each well define the qubit states j0� and j1�.

In the present scheme, entanglement is due to atom-
atom interactions caused by van der Waals and chemical
forces. This interaction is typically of a much shorter
range than the extent of the motional state wave functions,
and can consequently be thought of as a three-dimensional
delta-function potential with a strength proportional to the
scattering length [10,11].

The effect of the atom-atom interaction is negligible
when the barrier is high since the atomic wave functions do
not overlap. However, when the barrier is lowered tunnel-
ing takes place and the energy shift due to the atom-atom
interaction increases exponentially. The height of the bar-
rier is controlled by the ratio of intensities a�t� � Ih�If.
It is natural to compose the phase gate out of three stages
[see Fig. 2(a)]: a�t� first decreases from a0 where the bar-
rier is high, to a1 where the barrier is low, between times
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FIG. 2. Operation of the phase gate. (a) Variation of a�t� �
Ih�If with time between a0 � 0.310 and a1 � 0.286 during
the gate operation. (b) Associated trapping potential Vtrap�x, a�
for the highest (a � a0, grey line) and lowest (a � a1, black
line) barrier heights. The trapping frequency ve of the wells
varies between 60 and 80 kHz during the gate operation. The
thin horizontal lines represent the four lowest eigenenergies of
a single atom.
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t � 0 and t � T1. Between t � T1 and t � T1 1 T2 the
barrier is fixed at its lowest value, with a�t� � a1. Finally,
between t � T1 1 T2 and t � tf � 2T1 1 T2, a�t� in-
creases by reversing the a0 ! a1 sequence. Figure 2(b)
shows the trapping potential for the two extreme cases
a � a0 and a � a1.

The entanglement is simulated by solving the time-
dependent Schrödinger equation along the double-well di-
rection for the wave packet C�x1,x2, t� describing the two
atoms,

ih̄
≠C�x1, x2, t�

≠t
� Ĥ ���x1,x2, a�t����C�x1, x2, t� , (1)

where x1 and x2 are their respective positions. The
Hamiltonian Ĥ �x1,x2, a� can be written as a sum of two
single atom Hamiltonians ĥ�x1, a� 1 ĥ�x2, a� and the
atom-atom interaction Vint�jx2 2 x1j�, where

ĥ�x, a� � 2
h̄2

2m
d2

dx2 1 Vtrap�x, a� , (2)

and Vtrap�x, a� describes the double well of Fig. 2(b). The
interaction Vint�jx2 2 x1j� can be obtained by averaging
the three-dimensional delta function over y and z assuming
that both atoms are in the lowest trap state along these
directions [7]. The effective interaction becomes a one-
dimensional delta function [10]. However, for numerical
convenience this delta function is replaced by a Gaussian
potential centered around x2 � x1. The strength and width
of the Gaussian are chosen to mimic the effects of the
repulsive delta-function potential.

Equation (1) is solved by expanding the wave packet
C�x1, x2, t� in the time-dependent basis,

C�x1, x2, t� �
X

m
cm�t�xm���x1, x2; a�t���� , (3)

where xm���x1, x2; a�t����, m � 1, 2, . . . are the adiabatic en-
ergy-ordered eigenstates of the Hamiltonian Ĥ �x1, x2, a�
at a � a�t�, with the associated eigenenergies En�a�. In-
serting this expansion into Eq. (1) yields a set of coupled
equations for the coefficients cn�t�:

ih̄
dcn

dt
� En�a�cn�t� 2 ih̄

da

dt

X

m
Vnm�t�cm�t� , (4)

where the time-dependent nonadiabatic couplings Vnm�t�
are the spatial integrals �xnj≠�≠ajxm�. Equation (4) is
solved using a variable time step and variable order Runge-
Kutta integrator [12].

Figure 3 shows two states xn for the maximum barrier
height. These two states have one degree of excitation
along each of the two directions x1 and x2. In panels (a),
the wave function is localized around x1 � 2x2, implying
that the two atoms are trapped in different wells. This wave
function therefore corresponds to the two-qubit state j11�.
The wave function shown in the other panel is localized
077901-2



VOLUME 88, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 18 FEBRUARY 2002
x1

x2 x2

x1

(a) (b)

FIG. 3. Contour plots of two eigenstates xn�x1, x2; a0� when
the barrier is high (a � a0) as a function of the atom coordi-
nates x1 and x2 . The states j11� and j11� are shown in panels
(a) and (b), respectively. The solid and dotted contours repre-
sent positive and negative values. Note that because 87Rb is a
boson, the wave functions are symmetric under interchange of
x1 and x2.

around x1 � x2 and is therefore an unwanted state where
the two atoms are localized in the same well. This state
is denoted by j11�. Similarly, each two-qubit state jab� is
associated with a state jab� which has the same degree of
motional excitation but a slightly higher energy due to the
larger atom-atom repulsion when the atoms are trapped in
the same well. This interaction splitting is much smaller
than the trapping frequency.

The operation of the quantum phase gate critically de-
pends on the shape of a�t�. In order to guarantee that the
two-qubit states jab� are restored up to a phase factor at
the end of the gate, it is natural to choose a�t� such that
the wave packet dynamics is nearly adiabatic. This near
adiabatic behavior is achieved when the second term of the
right-hand side of Eq. (4) is negligible compared to the first
term. In practice, we keep the rate of change of a�t� small
by imposing h̄j�da�dt�Vnm�t�j # sjEn�a� 2 Em�a�j for
all pairs of quantum states �n, m�, where n is the index of
a two-qubit state and m fi n. The degree of adiabatic-
ity is determined by the adjustable parameter s ø 1. A
typical shape of a�t�, obtained for s � 0.05, is shown in
Fig. 2(a).

The variation with time of a�t� can be explained on
physical grounds. At early times �t � 0�, the barrier is
high and the states jab� and jab� are localized in differ-
ent regions of space (see Fig. 3, for instance). Conse-
quently, a two-qubit state jab� is mostly coupled to states
with a different vibrational excitation rather than to its al-
most degenerate companion jab�, and the barrier separat-
ing the two wells can drop relatively quickly compared to
the inverse of the level spacing between the jab� and jab�
states. However, the time scale of this variation must still
be slow compared to the trap oscillation period. At later
times �t . 0.1T1�, tunneling begins and the states jab� and
jab� become more strongly coupled. Consequently, the de-
crease of the barrier separating the two wells must occur
at a smaller rate. Out of the four two-qubit states, j11� is
most strongly affected by tunneling, which results in the
077901-3
largest nonadiabatic couplings Vnm�t�. This state thereby
constrains the gate operation.

Consequently, the fidelity F could be defined as the
probability Pj11��tf � � jc11�tf�j2 of remaining in the ini-
tial state j11� at the end of the gate. In general, the fi-
delity is defined as F �

P
a,b Pjab��tf�, and the quantity

�1 2 F � therefore measures the deviation from adiabatic-
ity, which arises from the nonadiabatic couplings induced
by the lowering and raising portions of a�t�. We can thus
increase the fidelity by increasing T1, but only at the sac-
rifice of increasing the gate duration. An estimate based
on perturbation theory suggests that for �1 2 F � � 1023

the phase f � p requires a minimum gate duration tf

of about 25 ms. The same analysis indicates that improv-
ing the fidelity to �1 2 F � � 1025 requires increasing T1
by a factor of 10. This yields a very slow gate, of dura-
tion of the order of 250 ms. A numerical simulation gives
a fidelity of �1 2 F � � 2 3 1025 with these parameters.
However, this analysis assumes that the nonadiabatic popu-
lations produced when lowering and raising the barrier
simply add up. Fortunately, an interference can be used
to dramatically improve the gate fidelity without signifi-
cantly increasing its duration.

Figure 4 shows the final jab� population for initial states
jab� � j00�, j01�, j10�, and j11� as a function of tf . The
gate duration tf is varied by increasing T2 for fixed T1.
Each curve oscillates or beats with a distinct oscillation
period t � 2p h̄��E�jab�� 2 E�jab��	 imposed by the en-
ergy difference between the two coupled states jab� and
jab� at the minimum barrier height. For a given state
jab�, constructive interference yields a maximum popu-
lation transfer in the unwanted state jab�, while destruc-
tive interference leads to a minimum excitation probability.
Note that excitation to other motional states, although ex-
plicitly included in the calculation, are negligible and at
most of the order of 1027.

A schematic of this interference, based on first-order
perturbation theory, is shown in Fig. 5 for the initial state
j11�. This figure shows the coefficients cn�t� of the adia-
batic eigenstates j11� and j11� during the gate operation,
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FIG. 4. Population exited in the state jab� at the end of the
gate as a function of the gate duration when the initial state at
time t � 0 is the two-qubit state jab�. The populations excited
in the states j01� and j10� are nearly indistinguishable, and the
population of j00� is negligible on the scale of this figure. The
vertical grey line indicates the gate duration for which a phase
f � p is accumulated.
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FIG. 5. Evolution of the coefficients cn�t� corresponding to the
states j11� and j11� as a function of time t, ignoring second order
processes. The initial two-qubit state is j11�.

where we should recall that these states are implicit func-
tions of time. As a result of the nonadiabatic couplings in-
troduced when lowering the barrier, the wave packet C�t�
of Eq. (3) emerges at time t � T1 with a small but unde-
sirable amplitude e ø 1 in state j11�, while the amplitude
in j11� is close to 1. The associated phases developed by
these two states are denoted by d and hL. During the inter-
val T1 # t # T1 1 T2, the Hamiltonian is time indepen-
dent, and since j11� and j11� are exact eigenfunctions of
this Hamiltonian their amplitudes evolve separately, each
accumulating an additional phase D � 2E�j11��T2�h̄ and
D � 2E�j11��T2�h̄. Finally, the barrier is raised between
times t � T1 1 T2 and t � tf . At time tf , the state j11�
emerges with a near unity amplitude and a phase 2d 1 D,
while simultaneously producing a nonadiabatic contribu-
tion eei�d1D1hR� to the j11� component. The other j11�
component, produced when lowering the barrier, acquires
the additional phase d when raising the interwell potential.

There are thus two distinct pathways leading to the state
j11�, depending on whether the excitation takes place when
lowering or raising the barrier. Note that since these two
operations are symmetric under time reversal, they induce
an equal amplitude e in the unwanted state j11�. These
two amplitudes interfere and yield the oscillation of the
jab� populations seen in Fig. 4.

Since this control scenario uses a symmetric sequence
of transformations, it has some similarities with Ramsey’s
separated oscillatory fields method for atomic clocks [13],
as well as with solid state NMR control fields used to se-
lectively turn off persistent couplings between nearby spins
[14]. Here, the first and last steps of the gate constitute the
two arms of an interferometer. By controlling the phase
relation between these two arms, the unwanted states can
be depopulated. A specific a�t� is required in order to im-
pose destructive interference for all four two-qubit states
simultaneously, and at a time when the accumulated phase
f equals p. The a�t� which is shown in Fig. 2(a) has
been optimized to satisfy this criterion and has been used
to obtain Fig. 4. This gate has a duration of 38 ms and is
therefore only 50% slower than the 25 ms gate described
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previously, with a fidelity improved by more than 2 orders
of magnitude, i.e., �1 2 F � � 6.3 3 1026.

In this Letter we have shown that it is possible to avoid
decoherence into a few nearby quantum states during the
operation of a two-qubit phase gate using a quantum in-
terference scheme. We have applied this scheme to a gate
based on the motional states of neutral atoms trapped in
an optical lattice. The proposed scenario can cancel unde-
sired population transfer when the decoherence dynamics
is accurately described by first-order perturbation theory.
This is obviously not a serious limitation since almost all
proposed phase gates rely on a nearly adiabatic transfor-
mation [1]. Furthermore, this scheme requires the gate
to be implemented in three symmetric steps consisting in
(i) switching on the qubit interaction, (ii) letting the in-
teraction perform for a time, and (iii) switching off the
interaction. This is again compatible with the implemen-
tation of most phase gates. This suggests that the proposed
scenario has a wide range of possible applications. For in-
stance, in neutral atom proposals based on internal states,
it is difficult to limit motional state excitation [7], and ion
traps have similar limits due to nearby center-of-mass mo-
tional states [5].

[1] A. Steane, Rep. Prog. Phys. 61, 117 (1998).
[2] P. Shor, in Proceedings of the 35th Annual Symposium on

Foundations of Computer Science (IEEE Computer Society
Press, Los Alamitos, CA, 1994).

[3] P. Divincenzo, Fortschr. Phys. 48, 771 (2000).
[4] J. Jones, Prog. Nucl. Magn. Reson. Spectrosc. 38, 325

(2001).
[5] I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995);

C. Monroe et al., ibid. 75, 4714 (1995); I. Cirac and
P. Zoller, Nature (London) 404, 579 (2000).

[6] Q. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995);
A. Rauschenbeutel et al., ibid. 83, 5166 (1999).

[7] D. Jaksch et al., Phys. Rev. Lett. 82, 1975 (1999);
G. Brennen et al., ibid. 82, 1060 (1999); D. Jaksch et al.,
ibid. 85, 2208 (2000); A. Hemmerich, Phys. Rev. A 60,
943 (1999); T. Calarco et al., ibid. 61, 022304 (2000);
G. Brennen et al., ibid. 61, 062309 (2000).

[8] L. Guidoni and P. Verkerk, J. Opt. B 1, R23 (1999).
[9] S. Friebel et al., Phys. Rev. A 57, R20 (1998).

[10] T. Busch et al., Found. Phys. 28, 549 (1998).
[11] E. Tiesinga et al., Phys. Rev. A 61, 063416 (2000); P. S.

Julienne et al., Phys. Rev. Lett. 78, 1880 (1997).
[12] R. Brankin et al., Contributions to Numerical Mathemat-

ics, edited by R. Agarwal (World Scientific, Singapore,
1993), p. 41.

[13] J. Vanier and C. Audoin, The Quantum Physics of Atomic
Frequency Standards (Hilger, Bristol, 1989).

[14] D. W. Leung et al., Phys. Rev. A 61, 042310 (2000);
L. Tian and S. Lloyd, ibid. 62, 050301 (2000).
077901-4


