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Low-Temperature Transport in Heisenberg Chains
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A technique to determine accurately transport properties of integrable and nonintegrable quantum-spin
chains at finite temperatures by quantum Monte Carlo is presented. The reduction of the Drude weight
by interactions in the integrable gapless regime is evaluated. Evidence for the absence of Drude weight in
the gapless regime of a nonintegrable system with longer-ranged interactions is presented. We estimate
the effect of the nonintegrability on the transport properties and compare with recent experiments on
one-dimensional quantum-spin chains.
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Introduction.—During the last few years several fami-
lies of materials containing well characterized quasi–one-
dimensional spin-1�2 structures have been synthesized.
The charge-transfer gap is in many cases large and the
spin excitations contribute significantly to the thermal and
magnetization transport at low temperatures. For example,
63Cu NMR studies [1] in Sr2CuO3 have measured a spin
diffusion coefficient (equivalent to diffusive magnetization
transport) several orders of magnitude larger than the value
for conventional diffusive systems, and thermal transport
measurements in Sr2CuO3 and SrCuO2 indicate [2] quasi-
ballistic transport with a mean-free path of several thou-
sands of Å.

These unusual results have been related to the peculiar
physics of one-dimensional quantum chains. It is known
that the spin transport in the XXZ chain
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is not diffusive, even for T ¿ Jxx [3,4]. A connection be-
tween integrability and transport [5–9] enlights the situ-
ation. In a generic integrable model such as H �xxz�, the spin
current is not conserved, but it has a nonvanishing “com-
ponent” with respect to the projection onto a conserved
operator. As a consequence, the current-current correla-
tion functions do not decay to zero for large times.

The Hamiltonian appropriate for real compounds such
as Sr2CuO3 and SrCuO2 correspond to H�xxz� only in first
approximation. A crucial question is therefore: How
do small deviations from integrability change the picture
described above? Extending an earlier analysis by Gia-
marchi [10], Rosch and Andrei concluded recently within
a memory-matrix approach [11], that deviations from in-
tegrability lead to an exponentially large conductivity in
Hubbard-like models away from commensurability.

Despite the ongoing effort devoted to this problem, the
fundamental difference between integrable and noninte-
grable models has not yet shown up in quantum Monte
Carlo (QMC) simulations [12,13], presumably due to the
demanding numerical requirements. In this Letter, we de-
velop the techniques and tools for the data analysis nec-
essary for extracting the Drude weight for integrable and
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the lifetime, mean-free path and the diffusion constant for
nonintegrable quantum-spin models from correlation func-
tions obtained by QMC simulations using the loop algo-
rithm [14]. We present extensive comparison with exact
results obtained by Bethe ansatz and compare for a non-
integrable system with recent experiments on Sr2CuO3.

Drude weight.—QMC simulations yield in general
correlations functions on the imaginary-time axis. We
therefore consider the Kubo formula for the dynamical
conductivity s�vn� � limq!0s�q, vn�

s�q, vn� �
2�K� 2 L�q, vn�

vn
�

D�q, vn�
vn

(1)

on the imaginary axis, where �K�, for the models we will
consider, is the expectation value of the kinetic energy per
site and where L is the current-current correlation as a
function of the Matsubara frequency

L�q, vn� �
1
L

Z b

0
eivnt� jz�q, t�jz�2q, 0��dt . (2)

Equation (1) leads via s�v� � pD�T�d�v� 1 sreg�v� to
the conventional relation [12] between the current-current
correlation function and the Drude weight (we are bor-
rowing the terminology of electrical responses) D�T � �
limvn!0 limq!0D�q, vn�

D�T � � 2�K� 2 L�q ! 0, vn ! 0� . (3)

Note that L�q, v 1 id� is analytic in the upper half of the
complex v plane and the extrapolation along the imagi-
nary axis can be reliably performed at low temperatures,
when many Matsubara frequencies vn � 2pTn are avail-
able close to v � 0 for the extrapolation [13].

The continuity equation ≠

≠t S
z
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≠

≠x jz
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the expression
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for the current operator jl�t� in the XXZ model. In Fourier
space, the continuity equation takes the form

d
dt

Sz
q�t� � �H, Sz

q� � i�1 2 eiq�jz
q . (5)

L�q, vn� is a nondiagonal four-site operator. In principle
nondiagonal operators can be computed using the loop
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algorithm [15] but, as discussed recently [16], the algo-
rithm to compute two-site correlation functions is more
efficient than the algorithms that compute operators in-
volving three or more sites. To obtain high quality data
we measure directly the dynamical susceptibility in imagi-
nary time

S�q, vn� �
1
L

Z b

0
eivnt�Sz

q�t�Sz
2q�0�� , (6)

a simple diagonal two-site correlation function. The Drude
peak is computed by using Eq. (3) and the relation

v2
nS�q, vn� � 4 sin2�q�2�D�q,vn � . (7)

This relation can be derived by a twofold partial integration
of the right-hand side of Eq. (6) with respect to t, which
leads to

S�q, vn � �
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n
L�q, vn� ,

where we have used Eq. (5) for the imaginary-time deriva-
tives of Sz

q and Sz
2q and definition (2). Evaluation of the

double commutator ��H, Sz
q�, Sz

2q�, which is the boundary
term from the partial integration, then leads to Eq. (7).
Note that this double commutator occurs here for the Mat-
subara correlation functions and does not occur for a re-
lated real-frequency correlation function [8].

Data analysis.— At low temperatures and frequencies,
the scaling of D�q, vn� can be obtained by simply in-
voking the conformal symmetry of the model emerging
in the gapless regime Jz , Jxx . S�q, vn� at small q then
takes the form S�q, vn� � D1�T�q2���cq�2 1 v2

n�. This
expression and Eq. (7) suggest the form

D�q,vn � �
D1�T�v2

n

D2�q� 1 v2
n

. (8)

Alternatively, Eq. (8) can be viewed as the first term of
the exact representation for D�q, vn� containing an infinite
number of terms [13].

The XXZ model maps to an interacting 1D spinless
fermionic system at half filling. For the noninteracting
case (the XX chain) we can compute exactly D�q, vn� and
we obtain D�0� � Jxx�p, and D�q� � Jxx sin�q� 	 Jxxq.
For Jz , Jxx the umklapp term remains marginally irrele-
vant and one expects Luttinger liquid like correlation func-
tions [10] such as Eq. (8).

In the ideal Luttinger liquid the bosonic excitations are
arbitrarily well defined at low temperatures and low fre-
quencies. The conductivity is necessarily infinite in that
case, and ansatz (8), being invariant under time reversal,
reflects that property. Nevertheless, we are also interested
in the study of more general situations in which the bosons
can decay, become quasiparticles, and memory effects can
be taken into account. To this end we use the formalism of
the memory matrices which has been successfully applied
to study how one-dimensional electron liquids can gain a
resistivity [10,11].
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This is achieved by taking the following fitting function
for D�q,vn . 0�:

D�q, vn� �
2X

j�1

Dj�q�v2
n

D
2
j �q� 1 2gj�q�vn 1 v2

n

. (9)

D�q, vn� is analytic in the upper complex plane for
gj �q� $ 0. For Di �0� � limq!0Di�q� we find either
a (i) gapless regime: D1�0� � 0 and D2�0� . 0, or a
(i) gap-full regime: D1�0� . 0 and D2�0� . D1�0�. The
first term in Eq. (9) dominates the low-frequency behavior
in both cases and we have set generally g2 � 0 in order
to keep the number of parameters to a minimum.

In the gapless regime the optical conductivity (1) takes
for small frequencies the Drude form

Res�v� �
2D1�0�g1�0�
v2 1 4g

2
1 �0�

�
s0

1 1 �vt�2
, (10)

where we introduced the dc conductivity s0 �
D1�0���2g1�0�� and the quasiparticle lifetime t �
�2g1�0��21. For t ! ` Eq. (10) reduces to
Res�v� � pD1�0�d�v�. At high frequencies

limvn!`D�0, vn� � 2�K� � D1�0� 1 D2�0� , (11)

and a finite D2�0� results in a reduction of the Drude
weight D�T � with respect to the kinetic energy; see
Eq. (3). A finite D2�0� measures therefore the amount
of decay experienced by the total current due to the
interactions. We note that the ansatz Eq. (9) for D�q,vn �,
together with Eq. (11), is consistent with the f-sum rule
[17]

R`
0 Res�v� � 2

p

2 �K� for the optical conductivity.
Ballistic transport.—In Fig. 1 we show the values for

D1�q� and D1�q� for the XX chain for different system
sizes as obtained by QMC [18], D2�q� and g1�q� optimize
to zero for this model. The different system sizes collapse
at the smallest momenta and in this way the thermody-
namic limit and the q ! 0 limit are performed simulta-
neously. Our prescription to extract D1�0� as the limiting
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FIG. 1. The parameters D1�q� and D1�q� from Eq. (9) as a
function of momenta q, for the XX model (Jz � 0) and various
system sizes at T � 0.004Jxx . Statistical error bars are of the
order of the symbol size [18].
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value D1�0� � limq!0D1�q� is more involved than previ-
ous q � 0 calculations [13], but we believe it to be nec-
essary in order to avoid substantial finite-size effects due
to the fact that D�q ! 0, vn� becomes a step function at
vn � 0 in the thermodynamic limit; compare Eq. (8).

For finite interaction Jz we find in the gapless regime
Jz # Jxx , that D1�q� 
 c�Jz�q, where c�Jz� is the velocity

c�Jz� �
p

2

p
J2

xx 2 J2
z

arcos�Jz�Jxx�
(12)

of the des Cloiseaux-Pearson spectrum [19]. In Fig. 2 we
compare the measured value of c�Jz� with the Bethe-ansatz
result (12) for Jz�Jxy � 1�2, 1. D1�q� is fitted well in the

gapped phase by ´�q� �
q

D
2
0 1 �cq�2. We find D0 �

0.191Jxx, which is close to twice the one-magnon gap of
0.091Jxx [19].

The damping g1�q� is vanishingly small for Jz , Jxx

and acquires a finite value in the gapped phase which
can be fitted phenomenologically by the relation
g1�q�D1�q� 
 const, independent of q.

In Fig. 3 (inset) we present values obtained by QMC
for the Drude weight in the gapless regime, Jz , Jxx at
T � 0.004Jxx . We find good agreement with the T � 0
Bethe ansatz result [20]

D�0� �
Jxxn2

4p

sin�p�n�
n 2 1

, Jz � Jxx cos�p�n� , (13)

especially at the smaller values of Jz . In this region the cor-
relation function is expected to satisfy more accurately the
scaling law (8). The S�q, vn� in the isotropic Heisenberg
model does not follow strictly the Luttinger liquid form. It
presents multiplicative logarithmic corrections, that should
be observed also for values of Jz slightly smaller than
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FIG. 2. D1�q�, D1�q�, and g1�q� from Eq. (9) as a function
of momenta q for the XXZ model, L � 512 and for various Jz
at T � 0.004Jxx . g1�q� is too small for Jz # Jxx to show up
on this scale. The lines are the Bethe-ansatz result (12) for the
velocity c�Jz� (no fit, for Jz # Jxx). For the discussion of the
fit for Jz � 1.5Jxx , see the text.
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Jxx when finite temperatures and system sizes impose
a cutoff for the RG equation of the umklapp coupling
constant [10].

We study now the behavior of the Drude weight at finite
temperatures for models free from strong multiplicative
corrections. The main conclusion of Zotos [21] is the fast
decay of the Drude weight when the temperature increases,
D�T� 2 D�0� 	 2kT 2��n21� where k is a constant and n
defined by Eq. (13). This rapid decrease with increasing
temperature is consistent with exact diagonalization stud-
ies at high temperatures [9]. Klümper et al. have found,
on the other hand [22], with an alternative Bethe-ansatz
approach, a functionally different behavior for D�T�; see
Fig. 4. For a numerical probe of D�T � we focus on n � 6
and consider several small temperatures. In Fig. 4 we show
a comparison of our data with the two available analytical
results [21,22]. Our results agree with the temperature de-
pendence predicted by Klümper et al., suggesting in par-
ticular a finite Drude weight also at the isotropic point [22].

Diffusive transport.—We consider now a perturbation
of H �xxz� that breaks the integrability but keeps the z com-
ponent of the magnetization conserved:

H 0 � J 0
z

X
i

Sz
i Sz

i13 . (14)

The expression (4) for the spin current remains valid.
For this model, H � H�xxz� 1 H 0, we predict a transi-
tion to a gapped phase around J 0

z � 0.3Jxx (for n � 6);
see Fig. 3. We find the relaxation time t � 1�2g1�0� �
limq!01�2g1�q� to be finite within numerical accuracy
(due to finite q and vn resolution), leading to a finite dc
conductivity in the gapless phase.

For 1�v ¿ t the optical conductivity takes [for small
cq�g1�0�] the diffusion form
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FIG. 3. For L � 512 and T � 0.004Jxx the QMC results for
the gap D1�0� and the relaxation rate g1�0� as a function of
J 0

z for H�xxz� 1 H 0 with Jz � Jxx cos�p�6�. Inset: The QMC
results for the Drude weight for J 0

z � 0 and T � 0.004Jxx and
L � 512 in comparison with the Bethe-ansatz result at T � 0,
Eq. (13). Note that D�T� is smooth for low T (see Fig. 4).
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FIG. 4. QMC results for the Drude weight for L � 512, 1024
and Jz � Jxx cos�p�6� as a function of temperature (in units
of Jxx) in comparison with two (solid lines: Ref. [22]; dashed
lines: Ref. [21]) Bethe-ansatz results.

s�q, v� �
s0v

v 1 iDsq2
, Ds �

c2

2g1�0�
� c2t .

(15)

Ds is the spin-diffusion constant. Equation (15) is con-
sistent with Ds � cls, where ls � ct is the mean free
length.

We have evaluated s�T�, in addition to the data
presented in Fig. 3, for n � 6, J 0

z � 0.3Jxx and find
s�T � 0.004Jxx� � 13.6 6 0.9, s�T � 0.008Jxx� �
12.1 6 1.0, and s�T � 0.012Jxx� � 10.1 6 0.8.

We now take Jxx � 2000 K, which is appropriate for
Sr2CuO3 and evaluate the transport coefficients for J 0

z �
0.3Jxx , n � 6, T � 0.004Jxx . We find l 
 88 lattice
constants and Ds 
 6 3 1015 sec21. We do not expect
this model to be directly relevant for Sr2CuO3. But if we
ask ourselves now the question of whether the experimen-
tal results for l and Ds being large (but finite) could be
explained within a pure spin model with a small devia-
tion from integrability, we might expect H � H �xxz� 1

H 0 to show the characteristic behavior of a nonintegrable
quantum-spin chain. If we now change the deviation from
integrability (controlled by J 0

z) such that g1�0� decreases
by a factor of about 10, then both l and Ds would in-
crease by the same factor and would be consistent with the
experimentally measured values [1,2].

Discussion.—We have shown that certain transport
properties of quantum-spin chains can be evaluated
directly from two-point correlations functions using a
relation between S�q, vn� and the dyamical conductivity
which we have derived. For the integrable chains we
support the original suggestion by Zotos et al. [5–7] of
a finite Drude weight at finite temperatures and settle a
recent dispute regarding the functional form of D�T �.
In addition we present results suggesting the absence of
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ballistic transport (i.e., zero Drude weight) for a nonin-
tegrable model, for which we are able to estimate the
magnitude of the dc conductivity. We have shown that the
experiments on quasi–one-dimensional spin compounds
[1,2] are, in principle, consistent with the notion that they
probe directly nonintegrability effects, though we cannot
rule out at this point that disorder or the coupling to
phonons [3] would lead to the observed finite values for
the transport coefficients.
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