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Aspect-Ratio Scaling and the Stiffness Exponent u for Ising Spin Glasses

A. C. Carter, A. J. Bray, and M. A. Moore
Department of Physics & Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom

(Received 19 November 2001; published 31 January 2002)

We introduce the technique of aspect-ratio scaling to study the scale dependence of interfacial energies
in Ising spin glasses, and we show how one can use it to determine the stiffness exponent u in a clean
way, with results that are independent of the domain-wall-forcing boundary conditions imposed on the
system. In space dimension d � 2 we obtain u � 20.282�3� for a Gaussian distribution of exchange
interactions.
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The determination of stiffness exponents in spin glasses
has a long history, going back to the early 1980s [1–3].
Loosely speaking, the stiffness exponent u of an Ising spin
glass is defined by the statement that the energy, Eint, of
an interface between ground states scales with length scale
L as Eint � Lu. The looseness in this definition comes
from the vagueness surrounding the phrase “length scale
L.” Since such interfaces are fractals [4,5], the length L
does not refer to any measure on the interface itself, but
rather to the size of the region in which the interface is
confined. Traditionally, square or (hyper)cubic regions
of side L are employed, with an interface imposed by a
suitable change of the boundary condition. The problem
with this approach is that the results often seem to depend
on the choice of boundary conditions. Here we explain
why this is so and introduce the technique of aspect-ratio
scaling as a method of obtaining a well-defined value for
u, independent of the boundary conditions imposed.

We briefly review some of the different boundary con-
ditions which have been used. For simplicity we discuss
only space dimension d � 2, but generalization to d . 2
is trivial. In each case the boundary condition in the y di-
rection is periodic, while the domain-wall-forcing bound-
ary conditions are imposed in the x direction.

(i) Periodic-antiperiodic (P-AP).—Ground state ener-
gies, EP and EAP, are determined for periodic and antiperi-
odic boundary conditions respectively (the latter often
defined by reversing the signs of one column of bonds).
The lower-energy state is obtained for P or AP boundary
conditions with equal probability, and the higher-energy
state contains a domain wall relative to the lower. The in-
terface energy is therefore defined as Eint � jEP 2 EAPj.

(ii) Free-antifree (F-AF).—The ground state energy,
EF, and spin configuration are obtained with free bound-
aries in the x direction. The spins at one end are held fixed,
those at the other end flipped, and the new ground state en-
ergy, EAF, obtained. In this case Eint � EAF 2 EF, and
Eint . 0.

(iii) Random-antirandom (R-AR).—The spins at both
ends are clamped in random configurations, and the ground
state energy, ER, is obtained. The spins at one end are held
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fixed, those at the other end flipped, and the new ground
state energy, EAR, is found. Now Eint � jER 2 EARj.

We now discuss the application of these methods to the
nearest-neighbor Ising spin-glass model with Hamiltonian
H � 2

P
�ij� JijSiSj, restricting our attention initially to

a Gaussian distribution of the exchange interactions, Jij ,
in dimension d � 2. The P-AP method has traditionally
been the most popular. The exponent u has been measured
for d � 2 [2,6], 3 [2,7], and 4 [8]. For d � 2 the result
u � 20.281�2� was obtained from square systems of size
L # 30 [6]. A recent result by Hartmann and Young (HY)
[9] on much larger square systems (L # 480), but using
free boundaries in the y direction, is consistent with this:
u � 20.282�2�.

R-AR boundary conditions were used in an earlier work
by two of us [3] to obtain u � 20.291�2� for L # 12.
We believe (as will be discussed below) that the small
discrepancy with Ref. [6,9] is due to the small range of
sizes available in the earlier study.

Results for F-AF boundary conditions differ from the
P-AP results by a somewhat larger amount, with u �
20.20 found for L # 24 [10], and u � 20.266�2� ob-
tained by HY using L # 320 (but with free boundaries
in the y direction). HY conjecture that the exponent is
actually independent of the boundary conditions, but that
larger sizes (L ¿ 320) are needed to reach the asymptotic
regime for F-AF boundary conditions.

The questions raised by these results are the follow-
ing: (i) Are the results really boundary-condition inde-
pendent? If not, what does u mean, and, if u is not well
defined, what are we to make of the conventional result
j � T1�u [3] for the divergence of the correlation length
as T ! 0? (ii) If u does have a well-defined meaning,
independent of the boundary conditions, is there an effi-
cient method to obtain its asymptotic, boundary-condition-
independent value?

To answer these questions we introduce here the idea
of aspect-ratio scaling (ARS). Using this approach we
obtain strong evidence for a unique u, and we determine
its value as u � 20.282�3�, consistent with values quoted
above from studies using P-AP boundary conditions. For
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a given a number of spins, this approach apparently con-
verges much more rapidly than using square samples.

Consider a system of length L and width M [11], where
we will usually take L $ M. The very natural assumption
underlying ARS is that the mean interfacial energy (aver-
aged over samples) has the asymptotic form (for L and M
both large)

�Eint� � MuF

µ
L
M

∂
, (1)

where L�M � R is the aspect ratio of the samples. Now
consider the limit R ! `. In this limit the system behaves
like a d � 1 system, for which one can show that [3,12]
�Eint� � 1�L. Imposing this limiting form on (1) requires
F�x� � 1�x for x ! `, and gives

�Eint� �
M11u

L
, L ¿ M . (2)

It is also of interest to consider the limit M ¿ L. In this
limit, sections of the interface whose spatial extent is much
larger than M are essentially independent, so we expect
(for an Md21 3 L system) the M dependence �Eint� �
M �d21��2 for P-AP or R-AR boundary conditions, since the
energies of different parts of the interface add with random
signs, i.e., F�x� � xu2�d21��2 for x ! 0 in (1), to give

�Eint� � Lu

µ
M
L

∂�d21��2

, M ¿ L �P-AP, R-AR� ,

(3)

while for F-AF boundary conditions they will add with the
same sign to give

�Eint� � Lu

µ
M
L

∂d21

, M ¿ L �F-AF� . (4)

Since the asymptotic forms (3) and (4) are different, it fol-
lows that the scaling function F�x� in (1) will depend on
the boundary conditions for general x. However, the lim-
iting large-x form, which leads to (2), will be independent
of the boundary conditions

If the limit L ¿ M can be achieved in practice, so that
the form (2) holds, the exponent u can be extracted from
the M dependence, and is transparently independent of the
boundary conditions, i.e., if we define

G�M� � lim
L!`

L�Eint� , (5)

then G�M� ! AM11u for M ! ` (A � const.), giving

u � lim
M!`

d lnG
d lnM

2 1 , (6)

which is clearly independent of the boundary conditions
imposed in the x direction since the limit L ! ` is taken
before the limit M ! `.

In practice we find it convenient to study a broad range
of R rather than just the regime R ¿ 1, though the ex-
ponent u will ultimately be obtained by extrapolation to
the R � ` limit. Figure 1 shows a log-log plot of L�Eint�
against M for various fixed aspect ratios R (1 # R # 32),
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FIG. 1. Variation of �Eint� with width M at fixed R for R-AR
boundary conditions.

with R-AR boundary conditions. The ground state ener-
gies were obtained by using exact transfer matrix calcu-
lations, with 2 # M # 12. Each point is an average of
105 samples. If ARS works perfectly for all L and M, the
lines corresponding to different R will be parallel, with
slope 1 1 u.

The lines are indeed almost straight and parallel. The
slopes, uR (R � “random”), are presented for different
aspect ratios in Table I. The R � 1 result, corresponding
to squares, is consistent with that obtained earlier using the
same method [3]. However, there is a very slow decrease
of the effective exponent with increasing R. We have
argued that it is sensible to extract the exponent from the
large-R limit, since in this limit any errors due to finite-
size corrections in the x direction are eliminated. Note
that when the data are truly in the regime R ¿ 1, the lines
in Fig. 1 will fall on top of each other. While they appear
to be approaching a limit, they have not yet reached the
limit at R � 32.

The equivalent results for F-AF boundary conditions are
presented in Fig. 2. In this case the lines are clearly not
parallel, i.e., there is a strong dependence of the measured
gradients on R. The lines are also noticeably curved, es-
pecially for smaller values of R, e.g., for R � 1 the slope

TABLE I. Effective stiffness exponent u as a function of the
aspect ratio R for R-AR (uR) and F-AF (uF) boundary condi-
tions, obtained from gradients of the lines in Fig. 1 and 2.

R uR uF

1 20.289�2� 20.153�2�
2 20.286�2� 20.215�2�
4 20.285�2� 20.249�2�
8 20.283�2� 20.265�2�

16 20.285�2� 20.273�2�
32 20.283�2� 20.274�3�
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FIG. 2. Variation of �Eint� with width M at fixed R for F-AF
boundary conditions.

(and therefore the effective value of u) decreases with in-
creasing M.

Table I contains the effective exponents, uF �F �
“free”�, extracted from Fig. 2, for the different values of
R. These exponents were obtained by fitting straight lines
to the data, discarding the smallest value of M in each
case. Note the strong dependence of uF on R. For R � 1
(i.e., squares) the effective uF differs by almost a factor of
2 from the effective uR , but the difference gets smaller for
larger values of R, and we argue that it approaches zero
asymptotically. The argument is based on the following
observation. For large R, we find that the interface
energy is nearly always identical, sample by sample, for
both boundary conditions. The differences apparent in
Table I are due to a small fraction of the samples where the
energies differ for the two boundary conditions. In fact, in-
spection of the interfaces themselves shows, as one would
expect, that these occupy identical locations for the two
boundary conditions whenever the interface energies are
the same. To understand this we note the following facts:

(i) A detailed study of the ground states indicates that,
for R ¿ 1, the actual spin configurations are independent
of the boundary conditions in the “interior” regions away
from the boundaries. The effect of changing the boundary
conditions is localized near the boundary, propagating a
distance into the system whose mean size is roughly pro-
portional to M over the range of M (2 # M # 12) studied.

(ii) The width of the interfacial region also scales
roughly as M. One can understand the latter as follows.
Suppose this width scales as Ma. Then a , 1 would
imply that the interface is “smooth” on large length
scales, inconsistent with it having a nontrivial fractal
dimension ds . d 2 1. On the other other hand, a . 1
would imply that for M ¿ 1 the interface is strongly
“stretched” in the x direction. Its energy could then
077201-3
be estimated, using (3) with M ! Ma and L ! M as
Eint � Mu1�a21� �d21��2 ¿ Mu , which is inconsistent
[13]. We conclude that a � 1. This means that there
are of order R � L�M independent places in which the
interface can sit. Any one of these has an energy of
order Mu , but the prefactor is a random variable with
nonzero weight at the origin [12]. The smallest of these
therefore scales as 1�R, i.e., Eint � Mu�R for R ¿ 1, a
result identical to Eq. (2). From (i) and (ii) we see that
the probability that the interface enters a region near the
boundary where the ground state spin configuration differs
for the two sets of boundary conditions, and for which the
interace energies also differ, is of order 1�R for large R.

The above considerations suggest that convergence to
the limiting behavior (2) occurs as 1�R, so in Fig. 3 we plot
the effective exponents listed in Table I against 1�R. The
resulting plots are compatible with a linear dependence on
1�R, and the data are consistent with convergence to a
unique value, u � 20.282�3�, as R ! `.

It is remarkable that, by exploiting ARS, studies of sys-
tems with relatively small widths, 2 # M # 12, can give
results of comparable precision to studies on square sys-
tems of much larger size. This is especially striking for
F-AF boundary conditions, where the effective exponent
depends strongly on the aspect ratio R. For example,
Table I already shows that, for R � 2 the estimate of
u is more accurate than the result uF � 20.20 obtained
for square systems of size up to 24 [10], while for R �
8 it matches the estimate uF � 20.266 obtained from
squares up to size 320 [9]. Furthermore, the ARS method
demonstrates quite convincingly that the stiffness expo-
nent is boundary-condition independent, a result which has
not been confirmed conclusively for squares even on the
largest systems studied [9]. This slow convergence of u
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FIG. 3. Variation of ueff with system aspect ratio, R, for R-AR
(upper data) and F-AF (lower data) boundary conditions. The
data are consistent with convergence to a unique limiting value,
u � 20.282�3�.
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FIG. 4. Variation of ueff with system aspect ratio, R, in d � 3
for R-AR (upper data) and F-AF (lower data) boundary condi-
tions. Periodic and free boundary conditions in the y direction
are indicated by the final character P or F.

for F-AF boundary conditions using squares suggests that
other methods of determining u, for example, from the de-
pendence on system size L of the Parisi overlap function
P�q� at q � 0 (notably in d � 3), using P�0� � L2u, as
predicted by the droplet model [4,12], or creating droplets
by flipping a central spin while holding the boundary spins
fixed [14], might also suffer from large finite-size effects.

We conclude by presenting some results for d � 3. The
transfer matrix approach restricts us to rather small widths,
M # 4. For each value of R we obtain an effective stiff-
ness exponent ueff by fitting a straight line to the three
points M � 2, 3, 4 in a plot of ln�L�jEj�� against lnM,
and defining the slope to be 1 1 ueff. These lines are
found to be quite straight, so ueff can be readily extracted.
It is plotted against 1�R in Fig. 4, for both R-AR and
F-AF boundary conditions. Also plotted are the equiva-
lent results for the case where free boundaries are used in
the directions normal to the domain-wall-forcing bound-
ary conditions. The final character in the legend spec-
ifies whether periodic (P) or free (F) boundaries have
been employed in these directions. The free boundary
data lie above the corresponding periodic boundary data in
each case.

The dependence of ueff on R in this case is quite strik-
ing. For R-AR-P boundary conditions, the R � 1 result,
ueff � 0.19 is in agreement with our earlier results [3]
on cubes of side L � 2, 3, 4 and those of Hartmann for
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L # 10 [7]. For R ! `, however, results for all boundary
conditions seem to converge to value u � 0.27, signifi-
cantly larger than previous estimates. It is surprising, also,
that the boundary conditions in the transverse direction do
not significantly affect the large-R limit of ueff. While the
small widths M used prompt caution in the interpretation
of this result (the same widths, used for d � 2, would give
u � 20.32 instead of 20.28), the trends with increasing
R are quite striking. In particular, the use of F-AF bound-
ary conditions for cubes (i.e., R � 1) leads to a very large
overestimate of the exponent.

In summary, the use of aspect-ratio scaling gives, in
d � 2, results comparable in quality to those obtained
from square systems of much larger size, and independent
of the domain-wall-forcing boundary condition. It does
this by eliminating finite-size corrections in the direction
normal to the domain wall. For d � 3 the results suggest
that u may be significantly larger than previous estimates.
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