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We propose the model of a manifold of one-dimensional interacting electron systems to account for the
superconductivity observed in ropes of nanotubes. We rely on the strong suppression of single-particle
hopping between neighboring nanotubes in a disordered rope and conclude that the tunneling takes place
in pairs of electrons, which are formed within each nanotube due to the existence of large superconducting
correlations. Our estimate of the transition temperature is consistent with the values that have been
measured experimentally in ropes with about 100 metallic nanotubes.
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Carbon nanotubes have nowadays a great potential for
technological applications in devices at the nanometer
scale. This makes very important the precise knowledge
of their electronic properties, taken as individual structures
as well as when packed in the form of ropes. The first
step of discerning their metallic or insulating behavior has
been completed, as the results obtained from theoretical
considerations [1] have been confirmed experimentally
[2]. It turns out that the low-energy spectrum of a carbon
nanotube may be gapless or not depending on the particu-
lar wrapping of the graphene sheet to form the tubular
structure.

The electron interactions are also known to modify sig-
nificantly the transport properties of the nanotubes [3,4].
In the case of metallic single-walled nanotubes, the one-
dimensional (1D) character of the system leads to a strong
correlation among the electrons, making the so-called
Luttinger liquid [5–8] the most appropriate paradigm to
describe the electronic properties [9–11]. Evidence of
Luttinger liquid behavior has been found in measurements
of the tunneling conductance in ropes [3] and in individual
single-walled nanotubes [4].

Experiments have been also carried out to probe super-
conducting correlations in the carbon nanotubes [12,13].
By suspending them between superconducting contacts,
large supercurrents have been measured in samples almost
made of a single-walled nanotube and in ropes [12]. More
recently, superconducting properties have been measured
in ropes suspended between nonsuperconducting, good
metallic contacts [14]. Evidence of superconducting fluc-
tuations has been also obtained in individual single-walled
nanotubes [15]. In the experiments presented in Ref. [14],
a drop by 2 orders of magnitude in the resistance has been
found, down to the minimum value consistent with the
number of conducting channels in the rope. This feature,
together with its suppression under a suitably high mag-
netic field, shows the existence of superconductivity in-
herent to the ropes of nanotubes [14]. The value of the
transition temperature varies from one sample to another,
being below 1 K in the two where the resistance drop has
been measured.
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In this Letter, we develop a model to account for the
superconductivity intrinsic to the ropes of nanotubes. The
problem that faces any model trying to describe such ef-
fect is twofold. In the first place, it is known that the
single-particle hopping between neighboring nanotubes in
a rope is strongly suppressed [16]. This is because, in gen-
eral, the different helical structure of the nanotubes leads
to the misalignment of their lattices and, therefore, to the
difficulty of conserving momentum for an electron hop-
ping from one nanotube to the other. On the other hand,
the effect of superconductivity cannot rely exclusively on
the properties of the individual nanotubes, since any corre-
lation in a 1D system can only develop a divergence at zero
temperature [8].

The experiments on the proximity effect of Ref. [12]
show anyhow the existence of sensible superconducting
fluctuations in carbon nanotubes. The precise value of the
critical supercurrents found there can be explained only by
the presence of a short-range attractive interaction coming
from the coupling to the elastic modes of the nanotube
[17]. The point is that, as long as Cooper pairs are formed
locally with zero total momentum, they may overcome
the special difficulty that single electrons find to tunnel
between neighboring nanotubes.

According to the work of Ref. [16], the amplitude tT for
tunneling between nanotubes with the same chirality and
orientation is of the order tT � 0.01 eV. In a disordered
rope, the misalignment of the lattices of neighboring nano-
tubes introduces in general an additional suppression of
the hopping amplitude by a factor � exp�2Ra0�dk�2�4�,
where R is the radius of the tube, dk is related to the
mismatch of the Fermi points, and a0 is a parameter of
the order �0.5 Å [16]. For a typical nanotube radius R �
7 Å, this factor is �0.005.

The tunneling amplitudes have to be compared with the
energy scale at which the metallic nanotubes behave as 1D
objects. This is the scale Ec below which the gapless linear
subbands dominate the physical properties, and it can be
estimated as Ec � 0.1 eV. The probability l2 of tunneling
of a Cooper pair, given by the square of tT in units of Ec,
has a relative weight of the order of �0.01. On the other
© 2002 The American Physical Society 076403-1
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hand, the probability of tunneling of a single electron has
a relative weight of the order of �0.0005. This means that
pair hopping is the dominant process for tunneling between
neighboring nanotubes in a disordered rope.

Prior to considering pair hopping, the rope can be de-
scribed at low energies by a model in which each nanotube
is treated as a 1D system, whose charge can interact with
the charge in the other nanotubes of the rope. The Ham-
iltonian for this model, including a collection of metallic
nanotubes a � 1, . . . , n with linear branches of different
chirality i � 1, 2, can be written in terms of the respec-
tive density operators rais [18]:

H1 �
1
2

yF

Z kc

2kc

dk
X
ais

:rais�k�rais�2k�:

1
1
2

Z kc

2kc

dk
X
ais

rais�k�
X
bjs0

Vab�k�rbjs 0�2k� ,

(1)

where kc � Ec�yF .
For the potential between different nanotubes

Vab we take the Coulomb interaction VC�k� �
�e2�4p2� logj�kc 1 k��kj [19], which remains long
ranged in one spatial dimension [20]. According to the re-
sults of Ref. [17], the interaction potential Vaa within each
nanotube includes, moreover, the effective short-range
attraction coming from the coupling to the elastic modes,
so that Vaa�k� � �e2�4p2� logj�kc 1 k��kj 2 g�2p.
The strength g of the attractive interaction is inversely
proportional to the mass of the atoms and directly pro-
portional to �t0�ys�2, where t0 is the modulation of the
lattice hopping and ys is the speed of sound [21]. A rough
estimate for a carbon nanotube gives g�yF � 0.2.

Terms which couple the spin densities have been ne-
glected in writing the Hamiltonian (1). These are backscat-
tering (BS) interactions, which arise as a remnant of the
Coulomb interaction at short distances. Being local in the
nanotube lattice, their couplings are reduced by a relative
factor of the order of �0.1a�R, where a is the nanotube
lattice spacing [9–11]. These terms are marginally rele-
vant in the renormalization group sense. This means that
they have greater strength as the model is scaled to smaller
energies, but the rate of increase starts being quadratic in
their own couplings. Thus, the theory has to be scaled to
extremely low energies, many orders of magnitude below
Ec, to have the BS couplings comparable to the couplings
in (1) [10].

The bundle of 1D electron systems coupled only by
charge interactions resembles the system proposed in
Ref. [22] for the description of the sliding Luttinger
liquid. Here the Coulomb interaction couples each of the
nanotubes to all the others in the bundle. We recall that,
for the samples of the experiments reported in Ref. [14],
the number of metallic nanotubes is very large, of the
order of n � 100. Then, the coupling of the charge in
the different nanotubes leads to a significant reduction
of the effective repulsive interaction. On the other hand,
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the effect of the intratube attractive interaction does not
depend on the number of nanotubes and, in a certain
regime, it may dominate over the Coulomb interaction.

The above point can be checked by looking at the cor-
relators of the model governed by H1. These can be com-
puted exactly by means of bosonization techniques. For
instance, the propagator D�0��x, t� for the Cooper pairs
within each nanotube factorizes into the different interac-
tion channels, taking the form

D�0��x, t� � �C1
a1"�x, t�C1

a2#�x, t�Ca1"�0, 0�Ca2#�0, 0�	

� C�x, t�
n21Y

1

N�x, t�
3nY
1

F�x, t� . (2)

The first factor in Eq. (2) corresponds to the contribution
of the total charge density, which is given at zero tempera-
ture by the expression

C�x, t� � exp

√
2

1
2n

Z kc

0
dk

1
m�k�k

3 �1 2 cos�kx� cos�ỹFkt��

!
, (3)

where m�k� � 1�
p

1 1 8nVC�k��yF 2 4g�pyF and
ỹF�k� � yF�m�k�. The factors N �x, t� correspond to
the rest of the charge channels, and they have a form
similar to (3) but with m � 1�

p
1 2 4g�pyF instead

of m�k� and ỹF � yF�m instead of ỹF �k�. The fac-
tors F�x, t� correspond to the noninteracting channels
with m � 1. The computation can be extended to the
case of temperature T fi 0, just by inserting the factor
1 1 2��exp�ỹFjkj�T� 2 1� in the integrand of expres-
sions such as (3) [5].

The couplings that produce the most accurate fit
of the critical supercurrents reported in Ref. [12] are
2e2�p2yF 
 1.0 and 4g�pyF 
 0.6 [17]. For n � 100,
the strong reduction of the Coulomb interaction implies
that the effect of the intratube attractive interaction
prevails in the system. In the g-ology description [6], the
model is in the regime with short-range attractive coupling
g2 , 0, where the singlet superconductor response is
enhanced over the charge-density-wave response. The
temperature dependence of the Fourier transform D̃�0�

of the propagator at zero frequency and momentum is
represented in Fig. 1. The enhancement of the propagator
is the signal that large superconducting correlations exist
in the individual nanotubes at low temperatures.

The above considerations are pertinent to the system at
half filling, in which the linear subbands cross at the Fermi
level. When the nanotubes are slightly doped, the shift
of the Fermi level gives rise to four Fermi points. The
Cooper pairs have then the possibility to resonate between
the outer and the inner gapless subbands. Anyhow, as long
as the repulsive interactions mediating these processes are
reduced by a relative factor as small as that of the BS
interactions [9,10], the s-wave pairing is favored over other
channels with different symmetry.
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The tunneling of Cooper pairs between the nanotubes can be taken into account by modifying the Hamiltonian (1) with
the additional term

H2 �
X

�a,b	
�l2�ab

Z kc

2kc

dk
Z kc

2kc

dp
Z kc

2kc

dp0�C1
ai"�k 1 p�C1

a2i#�2p�Cbj"�k 1 p0�Cb2j#�2p0� 1 H.c.� , (4)
where C
1
ais is the electron operator and the sum runs over

all pairs �a, b	 of nearest-neighbor metallic nanotubes.
The term (4) is a relevant perturbation from the renor-

malization group point of view. However, the anomalous
scaling dimensions of the relevant perturbations turn out
to be in general rather small. They can be computed in
the boson representation and, in the case of the term (4),
the result is g2 � 2�1�4nm�k0� 1 �n 2 1��4nm 2 1�4�.
k0 represents some effective value, which does not affect
significantly the estimate. For the above mentioned cou-
plings, we obtain g2 
 20.07. Thus, even 4 orders of
magnitude below Ec, we observe that l2 is not enhanced
by more than a factor �1024�g2 � 2.

The proposed model has a superconducting instability at
some finite temperature, provided that the Cooper pairs are
able to percolate in the transverse directions of the rope.
This is the case of the superconducting ropes of Ref. [14],
although to meet such an experimental condition one has to
find the appropriate sample out of a large number of them
[23]. Assuming the coherence in the hopping of pairs in
the transverse directions, we may write the propagator of
the Cooper pair from a metallic nanotube a to another b
as a function D�la, lb ; x, t� of the distance x along the
rope and the positions la and lb of the nanotubes in the
transverse section of the rope. This object can be related to
the propagator D�0� along each nanotube through the self-
consistent diagrammatic equation in Fig. 2, which takes
into account the dominant terms in powers of l2.

By introducing the Fourier transform with respect to
�x, t� as well as in the la variables [24], the equation in

FIG. 1. Plot of the propagator D̃�0� at zero frequency and mo-
mentum versus T�Ec , for 2e2�p2yF � 1.0. The dashed line
corresponds to the case n � 1 and g � 0, and the solid lines
to n � 100, and the respective values (from top to bottom)
4g�pyF � 0.75, 0.5, 0.
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Fig. 2 can be written for the Fourier transformed propaga-
tor D̃ in the form

D̃�q; k, vk� � D̃�0��k, vk�

1 D̃�0��k, vk�l2�q�D̃�q; k,vk � . (5)

We are interested in the propagation of the Cooper pairs
from a metallic nanotube to the rest in the rope, which
is given by D̃�0; 0, 0� �

P
lb

R
dx

R
dtD�la, lb; x, t�. By

solving Eq. (5), we get the result

D̃�0; 0, 0� �
D̃�0��0, 0�

1 2 l2�0�D̃�0��0, 0�
. (6)

The relevant dependence of D̃�0; 0, 0�, as well as of
D̃�0��0, 0�, is on the temperature. It becomes clear that,
if the superconducting correlations are such that D̃�0��0, 0�
has a divergence at T � 0, then the effect of pair hopping
gives rise to the appearance of a pole at a finite value
of T in the propagator of the Cooper pairs in the rope.
According to the conventional interpretation, this is the
signal of the condensation of Cooper pairs and the onset
of the superconducting transition in the system.

In practice, when dealing with a rope of finite length
L, the divergence of D̃�0��0, 0� is cut off at a temperature
scale about 1 order of magnitude below yF�L. The curves
shown in Figs. 1 and 3, for instance, have been obtained
for a system with L � 1000�kc, which corresponds to
L � 1 mm with an appropriate choice of the length scale.

Taking our estimate of the pair-hopping amplitude l2 �
0.01, we observe that the length L � 1000�kc may be in
some samples at the limit below which a superconducting
instability cannot arise in the system. This depends on the
spatial distribution of metallic nanotubes, which should
determine more precisely the effective value of l2 to be
used. Quite remarkably, a superconducting transition has
been found in samples whose length is 1 mm or greater,
while a sample with low resistance and 0.3 mm long has
shown no transition at all [14].

Relying also on our estimate for l2, we observe from
Fig. 3 that the temperature of the transition to the su-
perconducting phase in a disordered rope with about 100
metallic nanotubes can be in the range between 1024 and

λ
l l la a c lb

2

D D(0)

la lb

D

= Σ
cl

+
all

(0)D

δab
a

FIG. 2. Self-consistent diagrammatic equation for the propa-
gator D of Cooper pairs along the rope.
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FIG. 3. Logarithmic plot of D̃�0� at zero frequency and mo-
mentum versus T�Ec . The solid lines are the transposition of
the solid curves in Fig. 1 for n � 100 and the respective val-
ues 4g�pyF � 0.75, 0.5, 0. The dashed line corresponds to the
case n � 400 and 4g�pyF � 0.75.

1023Ec. As the natural energy scale in our model is Ec �
0.1 eV, this sets the scale for typical transition tempera-
tures in the range between 0.1 and 1 K. These values are
consistent with the transition temperatures Tc 
 0.1 K and
Tc 
 0.4 K measured experimentally in the two samples
of Ref. [14].

The results of our analysis show that the superconductiv-
ity in the ropes of nanotubes is close in nature to that of the
alkali-doped fullerenes [25]. We have seen that the tunnel-
ing of electrons between neighboring nanotubes in a rope
takes place in pairs, which are formed within each nano-
tube due to the large superconducting correlations which
develop at low temperatures.

The low values of Tc compared to those of the alkali-
doped fullerenes can be understood on phenomenological
grounds by the fact that the electron-phonon coupling is
smaller in the nanotubes. This is consistent with a higher
estimate of Tc obtained in Ref. [15] from measurements
on small-diameter single-walled nanotubes, which have a
larger electron-phonon coupling than the nanotubes in the
ropes. As seen in Fig. 3, another way to obtain a higher Tc

in the ropes may be to increase the number of nanotubes
of the samples. Finally, the feasibility of controlling the
rate of tunneling between the nanotubes should be studied
since, as observed from Figs. 1 and 3, a slight change in
that parameter may result in an increase of Tc by more than
1 order of magnitude.
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