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Observation of Solitary Elastic Surface Pulses

A. M. Lomonosov and P. Hess
Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg, Germany

A. P. Mayer
Institute of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany

(Received 17 October 2001; published 1 February 2002)

The formation of solitary elastic surface pulses from laser-generated pulselike initial conditions is
reported. The nonlinearity of the medium is compensated by both normal dispersion and anomalous
dispersion, which were realized by coating isotropic fused silica by a metal and titanium nitride film,
respectively. As an anisotropic material, silicon covered with an oxide layer was studied. The experi-
mental results agree with numerical simulations carried out with a nonlocal evolution equation, which
describes nonlinear propagation of surface acoustic waves in a dispersive medium.
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Solitary waves, first observed on the surface of water in
a shallow channel, have since been found to exist in vari-
ous physical systems [1]. Nowadays, they are intensively
studied in many branches of science, especially in the field
of nonlinear optics because of the prospect of their appli-
cation in long-distance communication systems based on
optical fibers. From the theoretical point of view, solitary
waves are spatially localized solutions of nonlinear disper-
sive evolution equations describing wave propagation in
the system. In the case of surface waves on shallow water,
this is the celebrated Korteweg–de Vries (KdV) equation,
which is integrable via the inverse scattering transform. Its
solitary wave solutions possess the soliton property of dis-
playing particlelike behavior when waves collide [1].

While solitary waves on a water surface, which are con-
nected with gravity, were first observed in 1834 and have
been thoroughly studied, there has been no clear experimen-
tal observation of their elastic counterparts at the surface
of a solid. Concerning the shapes and other properties of
such solitary surface acoustic waves (SAWs), so far there
exist only a few theoretical predictions [2] (for references
to earlier work, see [3]). In previous experiments carried
out with the aim of detecting signs of solitary surface
waves [4–6], a sinusoidal input wave with high amplitude
was launched into the system. The recorded waveforms
were reminiscent of solitonic structures known to evolve
out of sinusoidal initial conditions in the KdV equation
[7,8]. However, it was not possible to extract the shape of
a single solitary pulse. In fact, the previous experimental
results have been largely explained by their authors on the
basis of the KdV equation, which is the correct evolution
equation for longitudinal bulk waves but not for solitary
surface waves. Single longitudinal bulk solitons have been
observed recently in plates at 35 K [9], and solitary strain
waves in rods are described in [10].

In order to identify a single solitary pulse, it is more fa-
vorable to start with a short, high-intensity acoustic pulse.
This has been achieved by pulsed laser excitation, a method
that has been successfully applied to study nonlinear SAW
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pulses by monitoring their evolution along the surface of
homogeneous elastic media [11–13]. To allow a solitary
wave, the elastic nonlinearity of the solid has to be bal-
anced by dispersion. Rayleigh waves become dispersive
when the elastic medium is covered by a film with differ-
ent properties, which gives rise to an acoustic mismatch at
the interface. By selecting suitable coatings, both normal
and anomalous dispersions were produced to match with
the excited nonlinear SAW pulses.

The solitary regime of SAW propagation requires a suf-
ficient amplitude of elastic deformations in the wave field.
In experiments with uncoated samples, deformation or
acoustic Mach numbers of the order of M � 3 3 1023 are
needed to produce an observable nonlinear distortion [12].
A further increase of the SAW magnitude leads to mate-
rials fracture and for M � 2 3 1022 the yield strength of
most materials is reached. In coated materials, however,
the cracking threshold is higher, since shock front forma-
tion is suppressed by dispersion.

The experimental setup is shown schematically in
Fig. 1. The straight-crested surface pulses were excited

FIG. 1. Experimental setup with exciting laser pulse and cw
laser probe-beam deflection.
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with a Q-switched YAG:Nd laser, operated at 1.064 mm,
by focusing the 8 ns long laser pulses to a line of 7 mm
length and about 30 mm width. The pulse energy was in
the range of 30–60 mJ. For the resulting plane waves
the effect of beam diffraction could be neglected for the
conditions used. To excite sufficiently nonlinear SAW
pulses the absorption layer method was applied [12,13].
In this, the laser radiation is completely absorbed in a
thin layer of a highly absorbing carbon suspension that
is deposited only in the source region. The explosive
evaporation and the resulting recoil momentum exert a
high pressure normal to the surface and launch a strong
surface pulse.

The traveling pulse is registered by the probe-beam-
deflection technique at two probe locations, separated by a
fixed distance of 15 mm, using a diode-pumped Nd:YAG
laser. The output signal of the position-sensitive detector
is proportional to the surface slope u3,1 � ≠u3�≠x1 in the
wave propagation direction, which is related to the particle
velocity by u3,1 � 2 �u3�nR. Here u designates the normal
displacement and nR is the linear Rayleigh velocity. The
wave propagates in the positive direction along the x1 axis
and the x3 axis is the inward normal to the surface. This
setup was used to measure the effect of dispersion for
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small-amplitude SAWs, the effect of elastic nonlinearity,
and both effects simultaneously.

Solitary SAWs differ from solitons on shallow water or
in optical fibers in their two-dimensional character. While
the latter are guided in a water channel with a depth much
smaller than the characteristic spatial extent of the solitary
wave in the x1 direction, or in a spatial region contain-
ing the fiber core, solitary surface waves have a nontriv-
ial depth structure. They extend into the medium over
depth scales comparable with their width. Nevertheless,
a one-dimensional evolution equation for a component
≠ua�≠x � ua,1 of the displacement gradients at the sur-
face may be derived, where ua (a � 1, 2, 3) are the three
Cartesian components of the displacement field.

The elimination of the depth dependence leads to a
strongly nonlocal nonlinearity in the corresponding evo-
lution equation [14]. Letting ua,1�u,x3, X� depend on the
“retarded time” u � t 2 x1�nR and a stretched spatial co-
ordinate X along the propagation direction and introducing
its Fourier transform yields

ua,1�u, 0, X� �
Z `

0

dv

2p
e2ivuU�v, X� 1 c.c. , (1)

where the function U�v,X� satisfies the following evolu-
tion equation:
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The dimensionless function F is governed by the second-
order and third-order elastic moduli of the substrate mate-
rial alone, while D�v� depends on the acoustic mismatch
between the substrate and film of thickness d. D�v� may
be expanded in powers of vd�nR. In the following, we
retain the zero-order term D0 only. The evolution equa-
tion [Eq. (2)] provides a one-parameter family of solitary
wave solutions ua,1�u, 0, X� � kSa�k�u 6 kX��, with
k . 0 as the width parameter. The functional form of Sa

can be determined numerically as a limiting case of sta-
tionary periodic pulse train solutions with periodicity T �
2p�V, using the ansatz U�v� � kQn exp�6inVkX� 3

d�v 2 nV�, with n � 1, 2, 3, . . . , which results in a
system of nonlinear algebraic equations for the Fourier
amplitudes Qn. Note that the connection between width,
height, and (inverse) velocity of the solitary wave in the
frame of reference, moving with the speed nR, is the same
as for the soliton solutions of the Benjamin-Ono (BO)
equation and different from that of the KdV equation.

It follows from the structure of the evolution equation
that the integral

R`
2` du ua,1�u, 0, X� � ua�`, 0, X� 2

ua�2`, 0, X� vanishes. For isotropic substrates, the
function F is real (imaginary) in the case a � 1 (a � 3).
Consequently, the shape of the solitary wave is odd for S3

and even for S1. The requirement of a vanishing total area
under the pulse leads to a characteristic “Mexican hat”
shape of S1. This is observed for SAW propagation on the
Si(100) plane along the �100� direction, too. However, for
the propagation geometry Si(111) �112�, the function F is
neither real nor purely imaginary for either value a � 1 or
a � 3. This results in nonsymmetric pulse profiles. More-
over, in contrast to the situation with the Si(100) cut and

FIG. 2. Evolution of solitary pulse shape for normal dispersion
(fused silica with NiCr layer).
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the �100� direction, S3 is an almost even function, while S1

is approximately antisymmetric. This difference between
the two geometries demonstrates the strong influence of the
nature of elastic anisotropy of the substrate on the shape of
the solitary surface pulses. In the following we consider
Eq. (2) only for a � 3, which corresponds to the observed
quantity u3,1.

In systems described by evolution equations with lo-
cal nonlinearity such as the KdV or BO equation, solitary
pulses propagate with a speed higher than the velocity of
the nondispersive linear waves for linear normal disper-
sion. The situation is reversed for anomalous dispersion.
The experimental findings and numerical calculations, on
the basis of Eq. (2), confirm that this also holds for solitary
surface waves in the isotropic systems investigated here.

First we consider the type of nonlinearity observed in
isotropic fused silica, which exhibits a nonlinear transfor-
mation of the initial surface pulse into a typical U-shaped
profile of the normal component of the vibrational velocity
for an uncoated medium [11]. This corresponds to the
purely imaginary parameter F�1�2� in Eq. (2). The value
F�1�2� is associated with the second harmonic generation
of a sinusoidal wave and can conveniently be used to de-
scribe the character of the nonlinear distortions. Normal
dispersion was obtained by deposition of a film consisting
of a NiCr alloy (80% Ni, 20% Cr). By numerical simula-
tions employing Eq. (2) it was estimated that a film thick-
ness of about 300 nm was needed to obtain a single solitary
pulse at the remote probe location. In the experiments a
300 nm thick film of the NiCr alloy was used. The lin-
ear dispersion of a small-amplitude pulse was nRD0 �
23.6 3 1025 cm��s Hz�.

The solitary pulse monitored at the remote probe loca-
tion 17 mm away from the source is depicted in Fig. 2 as a
solid line. At the first probe spot a compact pulse of about
20 ns duration was registered. The evolution resulted in
the generation of a short bipolar pulse with a speed higher
than the linear Rayleigh velocity and in a weak oscillatory
tail moving with lower velocity (so-called radiation). Its
amplitude is not sufficient for a significant nonlinear ef-
fect to occur, and therefore it suffers only the distortions
due to dispersion. Consequently, the mean velocity of this
wave is lower than the Rayleigh velocity. The theoretical
stationary profile S3�u� calculated numerically on the basis
of the above equations for this particular case is shown in
the inset in Fig. 2. The spatial evolution of the SAW pulse,
in fact, leads to the formation of a pulse with the predicted
stationary shape.

In the simulations the signal from the first spot was sub-
stituted into Eq. (2) as an initial condition. The initial
value problem for this equation was solved numerically
and the result of the evolution at the remote probe loca-
tion is shown in Fig. 2 as a dashed line. Since the theory
describes the pulse evolution in very good agreement with
the experiments it is possible to simulate the further evolu-
tion of the solitary pulse. The results are shown in Fig. 3
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FIG. 3. Simulation of pulse evolution with distance from first
probe spot (fused silica with NiCr layer).

in two-dimensional form. Here the propagation distance
is plotted versus the retarded time. Note that the distance
is given with respect to the first probe spot; hence zero
distance corresponds to the profile measured at the first
probe spot. Thus the signal depicted in Fig. 2 corresponds
in Fig. 3 to a propagation distance of 15 mm. As is evi-
dent from Fig. 3, the bipolar pulse essentially conserves
its shape, in contrast to the behavior of the oscillatory tail,
which significantly broadens with propagation due to dis-
persion, despite its much narrower bandwidth. The width
and velocity of the solitary pulse depend on its amplitude.
At the beginning it propagates faster, but as the amplitude
decreases due to dissipation, the velocity decreases. The
longitudinal velocity component of the signal u1,1 is related
to the measured u3,1 component by the Hilbert transform.
Thus the bipolar solitary pulse in the shear component u3,1
corresponds to a typical Mexican hat shape in u1,1.

To change the sign of the dispersion effect we deposited
a “stiffening” film onto a fused silica substrate. As a
coating we selected titanium nitride, which possesses a
higher stiffness than the substrate. The numerical estimates
for the optimal film thickness provided a value of about
50 nm. The measured linear dispersion was nRD0 �
1.8 3 1025 cm��s Hz�. From the equations given above
it follows that the inversion of D0 causes the solitary pulse
to change its polarity as well. The measurement presented
in Fig. 4 confirms this prediction. The profile measured at
the remote location behaves with mirror symmetry with re-
spect to the case of normal dispersion: the bipolar solitary
pulse has an opposite polarity and a velocity lower than
the linear Rayleigh velocity for uncoated fused silica. The
076104-3
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FIG. 4. Evolution of solitary pulse shape for anomalous dis-
persion (fused silica with TiN layer).

predicted stationary solution S3�u� is shown in the inset.
The numerical simulations were carried out in the same
way as for normal dispersion and show satisfactory agree-
ment with the experiment.

The character of nonlinear SAW evolution in crystals
can differ essentially from that in isotropic media. For
example, nondispersive nonlinear pulse evolution on the
Si(111) cut in the �112� direction transforms the short ini-
tial pulse into a broadened N-shaped profile [12]. For this
direction F�1�2� � 20.33 2 0.042i with the real part
dominating. For the wave propagating in the opposite di-
rection �1 12� the parameter F�1�2� changes the sign of its
real part, and as a consequence the evolution becomes
mirror symmetric with respect to retarded time. For both
directions it is the component S3�u� that has a Mexican
hat shape in u3,1, but the polarities are opposite. To
obtain normal dispersion the Si(111) surface was oxidized
thermally at 900 ±C. The thickness of the silicon dioxide
layer was about 110 nm, and the measured dispersion was
nRD0 � 21.65 3 1025 cm��s Hz�. Solitary pulses with
the predicted Mexican hat shapes were observed in the
�1 12� direction, as shown in Fig. 5. The solid line shows
the experimentally registered pulse and the dashed line
shows the prediction of Eq. (2). The inset presents the
theoretical stationary solution for this particular system.

In summary, solitary surface elastic pulses have been
observed for the first time in a laser-based pump-probe ex-
periment by allowing the two major sources of distortion to
compensate each other. The nonlinearity was matched by
dispersion generated, respectively, by loading and by stiff-
ening the surface with a thin layer. In the former case the
solitary pulses propagated faster than the linear Rayleigh
velocity, in the latter more slowly. An evolution equation,
which deviates from the KdV equation, containing nonlo-
cal dispersion and nonlocal nonlinearity describes the ex-
perimentally observed pulse shapes. This fact stresses the
special features of solitary elastic surface waves in com-
076104-4
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FIG. 5. Evolution of solitary pulse shape for normal dispersion
[Si(111) cut with SiO2 layer].

parison to solitary water surface waves and bulk elastic
deformation solitons.
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