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In the selective withdrawal experiment fluid is withdrawn through a tube with its tip suspended a
distance S above an unperturbed two-fluid interface. At low withdrawal rates, Q, the interface forms
a steady state hump and only the upper fluid is withdrawn. When Q is increased (or S decreased),
the interface undergoes a transition so that the lower fluid is entrained with the upper one, forming a
thin steady-state spout. Near this discontinuous transition the hump curvature becomes very large and
displays power-law scaling behavior. This scaling is used to show that steady-state profiles for humps at
different flow rates and tube heights can all be scaled onto a single similarity profile.
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Is it possible to classify topological transitions in non-
linear fluid systems [1–4] in the same manner as one clas-
sifies thermodynamic transitions? When the topological
transition involves formation of a singularity in the fluid
flows or interface shapes, a similarity solution can provide
a simplified description of the flows and helps make such a
classification [5]. A crucial component to this approach in-
volves determining how characteristic physical quantities
and lengths describing the fluid system scale near the sin-
gularity. In many cases these singularities manifest them-
selves in the transition dynamics [6–9] and do not appear
in the steady state flows. In this Letter, we report on
steady-state interface profiles near the topological transi-
tion associated with the selective withdrawal experiment.
Despite the transition being discontinuous, scaling of the
interface is observed as the transition is approached.

In the selective withdrawal experiment a tube is im-
mersed in a filled container so that its tip is suspended
a height S above an unperturbed interface separating two
immiscible fluids. When fluid is pumped out through the
tube at low flow rates, Q, only the upper fluid is with-
drawn and the interface is deformed into an axisymmetric
steady-state hump (Fig. 1) due to the flows in the upper
fluid. The hump grows in height and curvature as Q in-
creases or S decreases until the flows undergo a transition
where the lower fluid becomes entrained in a thin axisym-
metric spout along with the upper fluid. The two-fluid in-
terface becomes unbounded in the vertical direction thus
changing the topology of the steady state. Once the spout
has formed, an increase in Q or decrease in S thickens the
spout.

The interfacial profiles at different flow rates and tube
heights are recorded. Near the transition, the steady-state
radius of curvature of the hump tip is orders of magnitude
smaller than the length scales characterizing the boundary
conditions (e.g., the tube diameter, D). This separation
of length scales suggests that a similarity analysis of the
steady-state hump profiles might be possible. However, for
the range of parameters explored thus far, even when the
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system is arbitrarily close to the transition from hump to
spout, the mean curvature of the hump tip, k, while large,
remains finite. Nevertheless, by fixing S and looking at the
steady-state profiles as Q is increased, we observe that both
the hump curvature and height display scaling behavior
characteristic of systems approaching a singularity. Since
the divergence is cut off before a singularity is reached this
transition appears to be “weakly first order.”

As shown in Fig. 1, the parameters important for this
experiment are the upper and lower fluid viscosities and
densities �hu, hl , ru, rl �, interfacial tension �g�, orifice di-
ameter �D�, tube height �S�, and flow rate �Q�. In look-
ing for scaling of the steady-state profiles, care must be
taken to design an experimental apparatus capable of iso-
lating the profiles near the transition. Experiments were
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FIG. 1. Photograph of two-fluid interface forming a hump.
The parameters for this problem: the height of the tube from the
unperturbed interface, S; withdrawal rate, Q; surface tension of
the two-fluid interface, g; fluid densities, ru and rl ; fluid vis-
cosities, hu and hl ; tube diameter, D; fluid height above the
interface; fluid height below the interface; container size; sur-
factant concentration. Here we restrict the investigation to the
S vs Q parameter space and defer discussion of the remaining
parameters to [10].
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performed in large tanks �30 cm 3 30 cm 3 30 cm�
capable of holding fluid layers that were each about 12 cm
in height. To ensure that the upper fluid level remained
constant, the withdrawn fluid was recycled back into
the container (the bottom fluid layer thickness remains
constant when the system is in the hump state). Steady
withdrawal rates were achieved by using a gear pump. We
verified that for the tube diameter �D � 0.16 cm�, tube
heights �0.1 cm # S # 1.1 cm�, and flow rates �Q #

10 ml�sec� used in the experiments, the container walls
were sufficiently distant and the fluid layers sufficiently
thick so as not to affect the flows [10]. We measured the
upper (heavy mineral oil) and lower (glycerin-water mix-
ture) fluid viscosities to be hu � 2.29 S and hl � 1.90 S,
the upper and lower fluid densities to be ru � 0.88 g�ml
and rl � 1.24 g�ml, and the surface tension [11,12] to
be g � 31 dyn�cm. Attempts to increase k near the
transition by decreasing g cause fluid mixing and result in
a diffuse interface at high shear rates so that some fraction
of the lower fluid is always being withdrawn [13].

While many of the parameters mentioned influence the
flows, our understanding of the scaling behavior can be
conveyed by focusing on S and Q. We can fix Q and
track the development of the hump profiles as a function
of S. Below the tube height, Su, the hump is unstable
and undergoes a transition to a spout. Figure 2 shows that
Su ~ Q0.3060.05 [14]. At low Q the transition is hysteretic:
the value of S where the spout becomes unstable and de-
cays back into the hump is larger than Su. We define the
difference of the two heights or hysteresis as DS. Figure 2
indicates that the data are consistent with an exponential
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FIG. 2. Plots of the transition tube height Su, hysteresis DS,
hump height hu, and mean radius of curvature 1�ku, as a func-
tion of Q. We find that Su ~ Q0.3060.05 (solid line). The DS
data are fit with an exponential decay (dashed) of the form
DS � 0.04 exp2Q�0.032 although the range is not sufficient to ex-
clude a power-law decay. We fit 1�ku (dash dot) with the form
1�ku � 0.02 1 0.32 exp2Q�0.032.
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decrease: DS � 0.04 exp2Q�0.032. For Q . 0.1 ml�sec,
DS was too small to measure.

In order to measure the mean curvature of the hump
tip k, we first fit the tip of the recorded profile with a
Gaussian and then calculate the curvature of the fitting
function at the hump tip. Figure 2 also shows the hump
height hu and mean radius of curvature 1�ku, at the tran-
sition as a function of Q. The dramatic decrease in DS
coincides with the onset of a flat asymptotic dependence
for 1�ku at Q . 0.1 ml�sec. We quantify this correla-
tion by fitting the curvature data with the form 1�ku �
0.02 1 0.32 exp2Q�0.032, which has the same exponential
decay with Q as does DS. For Q . 0.1 ml�sec we find
both ku and hu to be independent of the orifice diameter D
[10]. We restrict our scaling analysis to this regime [15].

Figure 3a plots k (where 0 # k # ku) versus Q for
six data sets corresponding to different values of S. As
shown in the inset of Fig. 3a, all fifteen data sets display
a power-law divergence for k, as Q approaches Qc (a
fitting parameter). While the power-law exponents remain
constant as S is varied, the prefactors to the power laws,
ck�S�, vary slightly with S and are scaled out in the inset.
Figure 3b plots the hump height hmax versus Q. The inset
to Fig. 3b shows that as Q approaches Qc (obtained from
Fig. 3a inset), the hump height approaches hc (a fitting
parameter) as a power law. Once again, the power-law
exponents for these data sets are the same over this range
of S. The prefactors ch�S� are scaled out in the inset.
Note that Qc changes with S indicating that the system
can approach a continuous line of divergences. Combining
the two scaling dependencies in Fig. 3c, we plot �hc 2

hmax��hmax versus the normalized curvature k�n. We find
that �hc 2 hmax��hmax scales as �k�n�0.8560.09 indicating
that, even though both hc and the power-law prefactor n
change with S, the power-law exponents are independent
of S for this range of tube heights. Note that n�S� �
ch�S� �ck �S�0.85�. The transition cuts off the evolution of
the hump states, making it impossible for the system to
approach arbitrarily close to the singularity and limiting
the precision with which we can determine the exponents.

The scaling observed for hmax and k suggests that the
hump profiles should display universal behavior as hmax
nears hc. The quantities 1��k�n� and �hc 2 hmax��hmax
track how quickly the radial and axial length scales de-
crease as the system approaches the singularity and are
therefore used to scale the profiles. We define the scaled
variables

H�R� �
hc 2 h�r�
hc 2 hmax

, R �
rk

n
, (1)

where h�r� is the hump profile and hc is taken from Fig. 3.
The transformation shifts the profiles so that under scal-
ing the singularity occurs at the origin and the maximum
hump heights occur at H � 1 and R � 0. Figure 4 shows
eight scaled profiles for the S � 0.830 cm data set. In the
074501-2
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FIG. 3. Scaling for the mean hump tip curvature k and height
hmax. (a) plots k vs Q for six tube heights. Each curve displays
diverging behavior with increasing Q. For each tube height we
choose a critical flow rate Qc as a fitting parameter and show
[(a) inset] that as Q approaches Qc the curvatures increase as
power laws. The prefactors to the curvature power laws ck�S�
are scaled out in the inset. Figure 3b plots hmax vs Q for six
tube heights. For each S we choose a critical hump height hc as
a fitting parameter. As Q approaches Qc [taken from (a) inset],
the hump heights approach the critical heights as power laws.
The prefactors ch�S� to the power laws in the inset are scaled
out. (c) plots �hc 2 hmax��hmax vs k�n for the entire data set
corresponding to fifteen different straw heights. The prefactor n
roughly decreases as exp22.5S. The line corresponds to a power
law with an exponent of 20.85.
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FIG. 4. The scaled hump profiles. The lower inset shows eight
profiles taken from the S � 0.830 data set. The main figure
shows the same profiles after scaling. The solid line corresponds
to a power law of the form R0.72. In the upper inset we compare
the universal curves for the S � 0.830, 0.613, 0.508, 0.381, and
0.255 cm data sets.

bottom inset we overlay the hump profiles scaled in
the main figure. We find excellent collapse of the profiles.
The solid line in Fig. 4 is a power law that fits the data
in the region beyond the parabolic tip. The picture that
emerges is of a parabolic tip region which decreases
in its radial scale and is simultaneously pulled towards
the singularity in the axial direction leaving behind it a
power-law profile with an exponent of 0.72 6 0.08. This
exponent is within error (although slightly smaller) of the
exponent observed in the scaling relation of Fig. 3c which
predicts an exponent of 0.85 6 0.09.

Typically, the observed scaling dependencies in these
types of problems result from the local stress balance. A
scaling analysis where the viscous stresses of the upper and
lower fluids balance the stress arising from the interfacial
curvature predicts linear scaling dependencies and conical
profile shapes. The nonlinearity of the observed dependen-
cies indicates that either a different stress balance governs
the flows (e.g., only viscous stress due to upper fluid bal-
ances stress due to the interface curvature) or that nonlocal
effects are coupling into the solution. A more detailed dis-
cussion can be found in [10].

Finally, we compare the similarity curves for five differ-
ent tube heights in the upper right inset of Fig. 4. The pro-
files all display the same power-law dependence. Within
error, the normalized curvature k�n (taken from Fig. 3c)
can be used to scale the radial components of these profiles
and obtain good collapse. In Fig. 3c we find that the nor-
malization prefactors, n, decrease as exp22.5S. Here, we
correlate this decrease with the observation that the pro-
files become shallower at larger S. The points of deviation
for the S � 0.255 and 0.381 cm profiles mark the tran-
sition from the similarity regime to the matching regime
074501-3
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beyond which the profiles become asymptotically flat. At
large enough radii all of the scaled profiles display these
deviations.

We have shown that in the Q . 0.1, ml�sec regime,
a similarity analysis can be used to describe the flows
near the selective-withdrawal transition [16]. We have ob-
served power-law scaling of the hump height and curva-
ture (Fig. 3) and used these scaling relations to collapse
the hump profiles at different flow rates and tube heights
onto a single universal curve (Fig. 4). However, the ori-
gin of the saturation of k at large Q remains an impor-
tant unexplained problem. Further insight into this cutoff
behavior may be gained by comparing with an analogous
two-dimensional (2D) problem which roughly corresponds
to replacing the tube with a line sink. Jeong and Mof-
fatt [17] showed that in an idealized case where the bot-
tom fluid is inviscid while the top fluid is very viscous,
the 2D hump interface forms a 2D cusp singularity above
sufficiently high withdrawal rates. Recently, Eggers [18]
showed that the solution changes when the lower fluid has
a finite viscosity; the system no longer manifests a sin-
gularity [19]. Instead, the approach to the singularity is
cut off and the system undergoes a transition to a different
steady state. In this new state, a sheet of the lower fluid
is entrained along with the upper fluid into the line sink.
However, the finite lower fluid viscosity prevents the hump
profiles from scaling onto a similarity solution.

Here, we have shown that for the three-dimensional se-
lective withdrawal system even when both fluids are vis-
cous (h . 1 S for both fluids) the effects of a singularity
manifest themselves in the scaling of the hump profiles.
Furthermore, preliminary experiments show that a reduc-
tion of the lower fluid viscosity to 0.01 S has little effect in
determining the final curvature of the hump tip or, equiva-
lently, how close the system is to forming a cusp. This
suggests that, for our 3D problem, either the effects of the
lower fluid viscosity enter as a higher-order perturbation
to the profile shapes or a different mechanism underlies
the avoidance of the cusp formation. If the latter scenario
is correct, it may be possible for the system to manifest
the singularity at a finite lower fluid viscosity. In either
case, determining which variables affect how close the
system approaches the singularity would allow for con-
trol of the maximum hump curvature and minimum spout
diameter. This control could then be used to advance
technologies such as coating microparticles [20], creat-
ing monodispersed microspheres [21], and emulsification
through tip streaming [18,22] which take advantage of the
selective withdrawal geometry.
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