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Direct Observation of Irrotational Flow and Evidence of Superfluidity
in a Rotating Bose-Einstein Condensate
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We have observed the expansion of vortex-free, rotating Bose condensates after their sudden release
from a slowly rotating anisotropic trap. Conservation of angular momentum, combined with the con-
straint of irrotational flow, cause the rotating condensate to expand in a distinctively different way to
one released from a static (nonrotating) trap. This difference provides clear experimental evidence of the
purely irrotational velocity field associated with a superfluid. We observed this behavior in absorption
images taken along the rotation axis.
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The term superfluidity was originally coined to describe
the striking experimental properties of liquid helium-4,
such as nonviscous flow, persistent currents, and quantized
vortices. Superfluid behavior has also been observed in
Fermi-degenerate quantum liquids such as helium-3 and
nuclear matter (nuclei and neutron stars). Since the cre-
ation of the first alkali metal Bose condensates [1], there
has been great interest in observing the superfluid proper-
ties of these systems, such as the absence of viscous dis-
sipation below a critical velocity [2] and the production of
quantized vortices [3–5] when the condensate rotates with
a sufficiently high angular velocity. Vortex creation is a di-
rect consequence of the fundamental constraint on super-
fluids that they have irrotational flow [6]. However, this
property of purely irrotational flow may also be observed
in the case of rotating, vortex-free condensates. One re-
cent experiment used the frequency of the scissors mode
oscillation to show that the condensate has a quenched mo-
ment of inertia [7,8]. (The scissors mode is a small angle
oscillation of the condensate shape, with zero mean angu-
lar momentum.) Another case of interest, recently studied
theoretically by Edwards et al. [9], occurs when a conden-
sate rotating below the critical angular velocity for vor-
tex nucleation is released from the trap and expands. In
their paper [9], Edwards et al. calculated the time evolu-
tion of this expansion. They show that irrotational flow,
together with the conservation of angular momentum, re-
sult in expansion behavior that is easily distinguished from
that of a nonrotating condensate or a thermal atom cloud.
We report here the experimental verification of their pre-
dictions by time-of-flight measurements on a condensate
released from a rotating anisotropic trap [10]. We directly
observe the irrotational flow in this vortex-free condensate,
thus giving further evidence for the superfluidity of Bose-
condensed gases. This work is complementary to the evi-
dence of superfluidity in condensates containing vortices.

The solutions of the hydrodynamic equations for super-
fluids [11] show that a condensate always has a moment
inertia less than that of a rigid body of the same mass dis-
tribution [12]. For the special case of axial symmetry, the
superfluid has zero moment of inertia about the symme-
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try axis. Thus a vortex-free condensate with some angular
momentum can never be symmetric about the rotation axis,
since this would imply the unphysical situation of infinite
angular velocity. We observed the effect of this constraint
in absorption images of the condensate taken along the di-
rection of the rotational axis —the projection of the cloud
in this direction never becomes circular (an aspect ratio of
unity). The evolution of the condensate density distribu-
tion, calculated using the hydrodynamic equations in [9],
agrees well with our data. We give a brief review of the
underlying theoretical aspects before describing the experi-
mental procedure and results.

In our experiment we have an anisotropic harmonic
potential with three angular frequencies vx , vy , vz .
The potential rotates about the z axis with angular fre-
quency V. It is convenient to define two new parame-
ters: the trap deformation, l � �v2

x 2 v2
y���v2

x 1 v2
y �,

and the mean square of the frequencies in the plane of ro-
tation, v2

m � �v2
x 1 v2

y ��2. In the hydrodynamic limit,
a condensate rotating in this trap displays a quadrupolar
flow pattern, as described in Fig. 1, and has a wave func-
tion which looks like (in the lab frame)

x

y

 Ω

FIG. 1. The velocity field of a vortex-free condensate in an
elliptical trap, rotating at frequency V. The small arrows of the
velocity field indicate the direction of the quadrupolar flow.
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where r�r� is the condensate density given in Eq. (3) be-
low. The quadrupole frequency, n, can be found from the
solutions of the following cubic equation [13]:

ñ3 1 �1 2 2Ṽ2�ñ 1 lṼ � 0 , (2)

where we introduced the dimensionless quantities ñ �
n�vm and Ṽ � V�vm.

In a rotating trap, the condensate experiences modified
trapping frequencies because of its quadrupolar motion.
The condensate density can be written as
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The modified frequencies ṽx and ṽy are given by

ṽ2
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ṽ2
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y 1 n2 1 2nV ,
(4)

where n is found from Eq. (2).
Hence, the aspect ratio of the condensate in the trap is
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ṽy

ṽx
�

s
V 1 n

V 2 n
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where Rx , Ry are the sizes of the condensate in the x and
y directions, respectively. The effective chemical potential
and condensate sizes in the trap can also be calculated from
Eqs. (4).

To calculate the expansion of a condensate when re-
leased from the anisotropic harmonic potential, we use the
following ansatz for the condensate density r�r, t� and the
velocity field v�r, t� in the Thomas-Fermi regime (as in
[9]):

r�r, t� � r0�t� 2 rx �t�x2 2 ry�t�y2

2 rz�t�z2 2 rxy�t�xy , (6)

v�r, t� �
1
2 =�yx�t�x2 1 yy�t�y2 1 yz�t�z2 1 yxy�t�xy� .

(7)

Inserting this ansatz into the hydrodynamic equations of
superfluids [11] yields a set of nine coupled differential
equations for the expansion parameters, which we inte-
grate numerically. The initial conditions for the density
are found from Eq. (3). Note that the cross term rxy�0�
is assumed to be zero at the instant when the condensate
is released from the trap. During the evolution in time of
flight, this term grows and can become comparable in size
to rx , so that the elliptical condensate rotates with respect
to its initial release angle. All components of the veloc-
ity field are initially zero, except for the cross term, which
is the quadrupole velocity field of the rotating condensate,
given by yxy � 2n [see Eq. (1)]. The behavior of the con-
densate is thus completely determined by the above initial
conditions and the nine coupled differential equations [9].
070406-2
The angle of the condensate and its sizes can be found
by diagonalizing the quadratic form defined in Eq. (6). Ini-
tially one finds that the condensate expands most rapidly
along its smaller axis so that its shape becomes more cir-
cular. However, the condensate has a quadrupolar flow
pattern (see Fig. 1) and an associated angular momen-
tum. Conservation of this angular momentum prevents
the condensate from becoming completely axially sym-
metric (i.e., with a circular cross section), as a cylindri-
cal quadrupolar flow pattern has no angular momentum.
So after reaching a critical minimum aspect ratio, it ex-
pands most rapidly along its original long axis and hence
the aspect ratio increases again. Close to the critical as-
pect ratio the moment of inertia also reaches a minimum
value and hence a peak is observed in the angular ve-
locity [9]. Energy conservation limits how fast the con-
densate can rotate and hence sets the minimum value for
the aspect ratio. In contrast, a thermal gas can have an
axially symmetric density distribution and preserve angu-
lar momentum, since there are no constraints of irrotationa-
lity. Thus it is essentially the superfluid nature of the Bose
condensate which prevents it from having a circular cross
section.

To observe this behavior we evaporatively cooled 87Rb
atoms in a time-averaged orbiting potential (TOP) trap to
a temperature of 0.5Tc, where Tc is the critical tempera-
ture for condensation. This produced Bose condensates
of 1.5 3 104 atoms, in a trapping potential with frequen-
cies vx�2p � vy�2p � 124 Hz and vz�2p � 350 Hz.
We then made the trap elliptical with vy�vx � 1.4 (cor-
responding to l � 0.32� by changing the ratio of the two
TOP-field components to Bx�By � 4.2. The eccentric trap
was rotated by modulating the high frequency sinusoidal
TOP signal (7 kHz) at the low trap rotation frequency V,
as described in [10]. The eccentricity was ramped up from
zero to its final value in 500 ms. Then the condensate was
left in the rotating trap for another 500 ms before it was
released at a fixed reference angle in the trap rotation, from
which the angles of the expanding cloud were measured.
The left column of Fig. 2 shows typical absorption images
of the condensate, taken along the axis of rotation, after
different expansion times. For these pictures the trap was
rotating at 28 Hz (well below the threshold to nucleate vor-
tices [14]) and at the instant of release the long axis of the
cloud was along the x direction. The angle and aspect ratio
of the cloud were obtained from a 2D parabolic fit to the
density distribution. The cloud reached a minimum aspect
ratio of 1.31 after about 4 ms time of flight and the angle
approached its asymptotic value of �55± after 16 ms. For
comparison, the evolution of a condensate released from
a nonrotating trap is shown for the same expansion times
in the right column of Fig. 2. In this case the aspect ratio
decreased steadily so that the cloud became circular after
about 4 ms, and then it continued to expand so that the
aspect ratio inverted. Note that the trapping frequencies
vx and vy were the same in both columns. The enhanced
aspect ratio in the left column, both in the trap and at long
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FIG. 2. Typical images of the condensate at different times
after release from a trap rotating at 28 Hz (left column) and
after release from a nonrotating trap (right column). At the
instant of release the long axis of the cloud lay along the x
direction. The rotating condensate is observed to have a much
larger asymptotic aspect ratio than the static one, as predicted
by the upper and lower theoretical curves of Fig. 4.

expansion times, is a result of the irrotational flow pattern
in the rotating condensate.

It was necessary to go to a high trap eccentricity to ob-
serve the deformation of the cloud clearly. We investi-
gated the evolution of the condensate in time of flight at
two different trap rotation frequencies V�2p � 20 and
28 Hz. In both cases the condensate was released from
a trap of vx�2p � 60 Hz, vy�2p � 1.4 3 60 Hz, and
vz�2p � 206 Hz. Figure 3 shows the calculated change
of angle of a condensate in time of flight after being re-
leased from a trap rotating at V�2p � 20 Hz (solid line)
and V�2p � 28 Hz (dotted line), with the experimental
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FIG. 3. The angle of the condensate plotted against the time
of flight. The open circles and the filled squares denote the
measured angles after release from a trap rotating at V�2p �
20 and 28 Hz, respectively. The solid and the dotted lines are
the respective theoretical calculations.

data points superimposed. In both cases the angle evolves
in a similar manner; it reaches 45± after about 6 ms. After
18 ms the angle is close to its asymptotic value between
55 and 60±.

Figure 4 shows the theoretical prediction for the evo-
lution of the condensate’s aspect ratio in time of flight,
with experimentally measured values superimposed, for
V�2p � 28 Hz (upper curve), for V�2p � 20 Hz (mid-
dle curve), and for release from a nonrotating trap (lower
curve). The data clearly demonstrate how the aspect ra-
tio for an initially rotating condensate decreases up to a
critical point, which is reached after approximately 4 ms.
From that point on it does not continue to expand along
its minor axis but the aspect ratio increases again because
the condensate cannot become circular under these condi-
tions. However, the condensate released from a static trap
has no velocity field which prevents it from becoming cir-
cular and the aspect ratio decreases steadily from vy�vx

(greater than one) to a final value of less than one. Ev-
ery experimental point displayed is the average of several
measurements. For each time of flight we had to refocus
our imaging system as the atoms move out of focus under
gravity when released from the trap. Incorrect focusing
would only result in a more circular image and the mini-
mum value for the measurement of the aspect ratio of ro-
tating condensates was never consistent with unity. There
is good agreement between the experimental data and the
theoretical predictions at rotation V�2p � 20 Hz. How-
ever, we observed a small deviation of the experimental
data from the predicted values for a higher rotation fre-
quency of V�2p � 28 Hz, shown in the upper curve.

Our results show that an expanding vortex-free Bose
condensate with some angular momentum refuses to be-
come circular about the axis of rotation, as predicted by
Edwards et al. [9]. This provides direct evidence that
Bose-condensed gases have purely irrotational flow and
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FIG. 4. The aspect ratio of a condensate in time of flight. Ini-
tially rotating condensates (upper and middle theoretical curves)
exhibit a strong backbending effect after 4 ms and the conden-
sate never becomes circular about the rotation axis. However,
after release from the nonrotating trap, the aspect ratio decreases
steadily and inverts (lower curve); it is unity at about 6 ms. Up-
per curve and filled squares: V�2p � 28 Hz; middle curve and
open circles: V�2p � 20 Hz; lower curve and filled triangles:
static trap.

a reduced moment of inertia, as a consequence of their
superfluidity. Other measurements of the flow of a Bose-
condensed gas would be of great interest, for example, flow
through a narrow tube [15] or array of holes, analogous to
the superleak experiments with liquid helium.
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