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Consequence of Superfluidity on the Expansion of a Rotating Bose-Einstein Condensate
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We propose an easily detectable signature of superfluidity in rotating, vortex-free gaseous Bose-
Einstein condensates. We have studied the time evolution of the expansion of such a condensate after
it is released from the confining trap. We find that if such a condensate is not initially rotating, then
at some moment it will instantaneously achieve a circular cross section. If the condensate is initially
rotating its irrotational flow and the conservation of angular momentum prevent the released condensate
from attaining a circular cross section, since the instantaneous moment of inertia is then proportional to
the asymmetry of this cross section.
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Recent experiments on trapped atomic Bose gases at
very low temperature have revealed the existence of re-
markable superfluid effects. Initial evidence of superfluid-
ity came from the observation of quantized vortices [1,2]
and of the reduction of dissipative phenomena [3].

Important signatures of superfluidity are also provided
by the study of rotating condensates at low angular veloci-
ties, in the absence of quantized vortices, where the irro-
tationality of the flow implies the condition = 3 v � 0
everywhere. In particular, the quenching of the moment
of inertia provides direct evidence of superfluidity, being
related to the suppression of the transverse response of the
many-body system [4]. The recent observation of the scis-
sors mode [5] has provided a clear example of this effect,
confirming with high accuracy the predictions of theory
[6]. The purpose of the present work is to investigate the
consequences of superfluidity on the expansion of an ini-
tially rotating and vortex-free condensate.

In the absence of rotation the expansion of a conden-
sate after releasing the confining trap is well understood
[7,8]. In particular, the shape of a condensate, initially
asymmetric in the x-y plane, when released approaches an
asymptotic configuration where the role of the long and
short axes is inverted with respect to the initial geometry.
This inversion occurs because of the larger pressure felt
by the system in the short direction where the gradient of
the density is higher. As a consequence, the cross section
of the condensate in the x-y plane will be instantaneously
circular at some intermediate time during the expansion.
The time needed to reach this symmetrical configuration
depends both on the initial deformation and on the pres-
ence of interatomic forces.

If the condensate is initially rotating, new features
emerge during the expansion which are the object of the
present investigation. In particular, we predict that the
condensate will never reach the symmetric configuration,
because of the occurrence of a repulsive barrier caused by
the irrotationality of the flow. See Fig. 1.
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An estimate of the effect is easily obtained by using
angular momentum and energy conservation. Angular
momentum conservation implies that when the system ap-
proaches the symmetric configuration in the x-y plane its
angular velocity in the same plane becomes larger and
larger as a consequence of the vanishing of the moment
of inertia. This is a crucial consequence of the irrotation-
ality of the superfluid motion. On the other hand, the an-
gular velocity cannot increase too much because of energy
conservation. By assuming that the initial energy of the
system E0 is mostly converted into rotational energy, one
finds E0 � V2

crQcr�2. On the other hand, angular mo-
mentum conservation requires V0Q0 � VcrQcr where V0
and Q0 are the angular velocity and the moment of in-
ertia at t � 0, while Vcr and Qcr are the corresponding

FIG. 1. This figure shows the time evolution of the expanding
condensate. (a) The sense of the initial rotation of the condensate
and (b) the definition of the rotation angle f are shown above.
(c) If the condensate is initially rotating, its cross section can
never become circular. (d) The condensate shape at long times.
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values at the point of maximum rotational energy (here-
after called critical time). One finds Qcr � V

2
0Q

2
0�E0

and Vcr � E0��V0Q0�. Since in a superfluid the moment
of inertia is given by the irrotational value Q � d2Qrig,
where

d �
� y2 2 x2�
� y2 1 x2�

(1)

is the deformation parameter of the cloud calculated with
respect to its symmetry axes, and Qrig � Nm�x2 1 y2�
is the rigid value of the moment of inertia, one con-
cludes that the system will reach a minimum deformation
which depends linearly on the initial angular velocity V0,
while its angular velocity, at the same time, will behave
like 1�V0.

The previous discussion suggests the following scenario:
the rotating system will first expand in the short direction
(we consider here a condensate significantly deformed in
the x-y plane at t � 0). At a time when the deformation
nears its minimum value, the condensate will rotate rapidly
causing the inversion of the long and short axes. The con-
densate then continues to expand along the original long
axis. The occurrence of a minimum deformation during
the expansion and the corresponding increase of the angu-
lar velocity can be regarded as a signature of the superfluid
behavior of the system. In fact, a classical rotating gas ex-
pands in a very different way, because of the absence of the
irrotationality constraint. In the classical case, neglecting
the effects of collisions during the expansion, the angular
velocity of the sample will decrease smoothly as a function
of time according to the law Vcl�t� � V0��1 1 V

2
0 t2�.

In the following we will provide a quantitative descrip-
tion of the expansion of a rotating Bose-Einstein conden-
sate at zero temperature in the Thomas-Fermi regime. This
regime is relevant to most current experimental situations.
The opposite limit, corresponding to the expansion of a
rotating ideal gas, will be considered in a separate paper.
In the Thomas-Fermi regime the equations of motion take
the simplified form of the hydrodynamic equations of su-
perfluids [9]. For the free expansion these equations, valid
in the laboratory frame, can be written as an equation of
continuity

≠n
≠t

1 = ? �nv� � 0 , (2)

and a Newton’s second-law “force” equation

m
≠v
≠t

1 =

µ
1
2

my2 1 gn

∂
� 0 , (3)

where n and v are the condensate density and velocity
field, respectively, and m is the atomic mass. The fac-
tor g � 4p h̄2asc�m in the second equation measures the
strength of the atom-atom interaction where asc is the
s-wave scattering length.

The condensate is assumed to be held at equilibrium in
a rotating trap just before turning off the external potential.
In [10] it was shown that in the rotating frame the station-
ary solution of the equations of motion still corresponds to
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a spheroidal form for the density profile. At t � 0 we can
write

n�r, 0� � b0 2 ax0x2 2 ay0y
2 2 az0z2 (4)

and

v�r, 0� � a0=�xy� , (5)

where the x-y plane is perpendicular to the axis of rota-
tion. The coefficients b0, ai0, and a0 are determined by
the number of atoms, N , the trap frequencies, vi , and the
initial angular velocity, V0, and should fulfill the station-
ary criteria discussed in [10]. For example, one has the
relationship

a0 �

µ
ax0 2 ay0

ax0 1 ay0

∂
V0 . (6)

If the angular velocity V0 is small, b0 and ai0 coincide
with their values in the absence of rotation and are
given by b0 � mTF�g and ai0 � mv

2
i �2g, where mTF

is the Thomas-Fermi value of the chemical potential. In
the same limit of small angular velocity the chemical
potential fixes the initial radii, Xi0 � �b0�ai0�1�2 [see
Eq. (4)] of the condensate according to the relationships
2mTF � mv2

xX2
0 � mv2

yY2
0 � mv2

z Z2
0 .

The solution of the expanding condensate can be written
in the form

n�r, t� � b�t� 2 ax�t�x2 2 ay�t�y2 2 az�t�z2

2 a�t�xy (7)

and

v�r, t� �
1
2=�ax�t�x2 1 ay�t�y2 1 az�t�z2 1 2a�t�xy� .

(8)

The condensate occupies the region in space where n .

0. Note that the function b�t� defines the density at the
center of the trap, n�0, t� � b�t�. At t � 0 one has b�0� �
b0, ai�0� � ai0, a�0� � a0, and a�0� � ai�0� � 0.

We assume that the condensate maintains a spheroidal
shape as it expands, as shown by Eq. (7). Because of the
initial angular velocity in the x-y plane, the symmetry axis
will rotate and the density will no longer be diagonal in
the x, y coordinates. The angle of rotation can easily
be evaluated in terms of the coefficients of (7) by intro-
ducing the usual transformation x � x0 cosf 1 y0 sinf,
y � 2x0 sinf 1 y0 cosf, and z � z0. This transforma-
tion diagonalizes the quantity s2 � ax�t�x2 1 ay�t�y2 1

az�t�z2 1 a�t�xy which takes the form

s2 �
1
2 �ax 1 ay� ��x0�2 1 � y0�2�

1
1
2 ��ax 2 ay� cos2f 2 a sin2f� ��x0�2 2 � y0�2�

1 az�z0�2 (9)

with the angle of rotation fixed by the relation

tan2f � 2
a

ax 2 ay
. (10)

The deformation parameter (1), calculated in the rotating
frame, then takes the form (we assume d $ 0)
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d �

q
�ax 2 ay�2 1 a2

�ax 1 ay�
. (11)
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The equations of motion for the nine parameters ai , ai ,
a, a, and b are obtained by inserting Eqs. (7) and (8)
into the hydrodynamic Eqs. (2) and (3). The equation of
continuity yields
�b 1 �ax 1 ay 1 az�b � 0, �ax 1 �ax 1 ay 1 az�ax 1 2axax 1 aa � 0 ,

�ay 1 �ax 1 ay 1 az�ay 1 2ayay 1 aa � 0, �az 1 �ax 1 ay 1 az�az 1 2azaz � 0 , (12)

�a 1 �ax 1 ay 1 az�a 1 �ax 1 ay�a 1 2a�ax 1 ay� � 0 ,

while the force equation provides four more equations

�ax 1 a2
x 1 a2 2 �2g�m�ax � 0, �ay 1 a2

y 1 a2 2 �2g�m�ay � 0 ,

2 �a 1 2�ax 1 ay�a 2 �2g�m�a � 0, �az 1 a2
z 2 �2g�m�az � 0 .

(13)
Equations (12) and (13) complete the nine first-order ordi-
nary differential equations that we must solve in order to
get n and v as a function of time. An equivalent formal-
ism was developed in [11] to investigate the behavior of
nonlinear oscillations carrying angular momentum.

Equations (12) and (13) ensure the conservation of the
integrals of motion, i.e., the number of atoms N , the total
energy E, and the angular momentum Lz. These quantities
can be expressed in terms of our variables. For example,
the integral of the density over all space must equal N :

N �
8p

15
b5�2

�axay 2 a2�4�1�2 a21�2
z , (14)

while the angular momentum, given by the irrotational law
Lz � Nmd2Qrig, takes the form

Lz �
1
7

mNVd2 b�ax 1 ay�
axay 2 a2�4

. (15)

The conservation laws (14) and (15) have been used to
check the consistency of our numerical solutions.

It is important to note that the equations of motion
[Eqs. (12) and (13)] are invariant with respect to the scal-
ing transformation t ! t�L, ai ! Lai , a ! La, ai !

L2ai , a ! L2a, so that the initial size of the condensate
can actually be excluded from the solution. For example,

FIG. 2. Angle of rotation of the condensate during the expan-
sion as a function of time for different values of the initial an-
gular velocity. The choice of the parameters is given in the text.
Time is given in dimensionless units (see text).
the dimensionless quantity d can be presented as d�t̃�,
where t̃ � t�2gax0�m�1�2. For small initial angular ve-
locities, t̃ coincides with vxt where vx is the frequency
of the trapping potential. The function d�t̃� depends only
on the initial shape of the condensate, i.e., on the ra-
tios ay0�ax0, az0�ax0 and on the dimensionless constant
ã0 � a0�2gax0�m�21�2. The same behavior holds for the
angle of rotation f�t̃� and for the dimensionless angular
velocity Ṽ�t̃� � df�dt̃ � V�2gax0�m�21�2.

The results of the numerical integration of Eqs. (12) and
(13) are presented in Figs. 2–4. We have assumed that ini-
tially the condensate has a cigarlike shape elongated along
the y direction with az0�ax0 � 1, ay0�ax0 � l2, and l �
0.39. This corresponds to an initial deformation in the x-y
plane given by d0 � �1 2 l2���1 1 l2� � 0.74. Time is
measured in units of the dimensionless quantity t̃. Three
different values of the parameter ã0 have been considered
�0.05, 0.15, 0.45�, corresponding to different choices of the
initial angular velocity and of the trapping parameters. In
the presence of rotation the relationships between the de-
formation parameters of the trap and the ones of the con-
densate are not trivial.

Using the stationary solutions derived in [10] we find
that the above choices for ã0 and l correspond to the

FIG. 3. Angular velocity of the condensate during the expan-
sion as a function of time for different values of the initial an-
gular velocity (see Fig. 2).
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FIG. 4. Deformation parameter of an expanding condensate
as a function of time for different values of the initial angular
velocity (see Fig. 2).

values V0 � 0.07vx , vy � 0.39vx, vz � 1.0vx ; V0 �
0.21vx, vy � 0.45vx , vz � 1.0vx; and V0 � 1.2vx ,
vy � 1.41vx, vz � 2.0vx, respectively. Notice that,
except for values of V0 much smaller than the trapping
frequencies vx ,vy , the relationship between a0 and V0
is not linear since the parameters ax0, ay0 entering Eq. (6)
are renormalized by the rotation of the trap. In particular,
the last choice �V0 � 1.2vx , vy � 1.41vx� corresponds
to a configuration belonging to the overcritical branch
discussed in [10] where the deformation of the condensate
has opposite sign with respect to the one of the confining
trap.

Figure 2 shows that the angle of rotation f�t̃� reaches,
for large times, a constant value. This is due to the rapid in-
crease in the condensate size during the expansion which,
in turn, causes a fast decrease of the angular velocity. The
actual value of the asymptotic angle depends on the initial
conditions, different from what happens in the ideal gas
where f always approaches the value p�2. In Fig. 3 we
show the angular velocity Ṽ�t̃�. One can see that, for small
values of the initial angular velocity, Ṽ exhibits a clear
enhancement in the first stage of the expansion. Corre-
spondingly the deformation parameter d�t̃� reaches a mini-
mum (see Fig. 4). If the initial angular velocity is large,
the minimum is shallow and eventually disappears. In this
case also the angular velocity changes its behavior and de-
creases monotonically with time (see dotted line in Fig. 3).
In the recent experiment of Ref. [12], steady rotating states
of magnetically trapped condensates were generated us-
ing rotating laser beams. The condensates were then im-
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aged after expansion. By using the formalism of Ref. [11],
the authors of Ref. [12] have checked that the deformation
of the expanding condensate exhibits only minor changes.
This result is the consequence of the relatively large values
of the initial angular velocity considered in this experiment.

In conclusion, we have shown that the expansion of a
rotating condensate reveals dramatic consequences of su-
perfluidity associated with the reduction of the moment of
inertia. These effects appear as a sudden increase of the
angular velocity accompanied by the occurrence of a mini-
mum in the deformation parameter. These effects, which
are particularly pronounced for small initial angular ve-
locities, should easily be observable by taking consecutive
images during the expansion of the rotating condensate.
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