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We give a comprehensive description for the irreversible growth of aggregates by migration from small
to large aggregates. For a homogeneous rate K (i; j) at which monomers migrate from aggregates of size

i to those of size j, that is, K(ai; aj) ~ a*K(i; j), the mean aggregate size grows with time as ¢

1/(2=2)

for A < 2. The aggregate size distribution exhibits distinct regimes of behavior that are controlled by the
scaling properties of the migration rate from the smallest to the largest aggregates. Our theory applies to
diverse phenomena such as the distribution of city populations, late stage coarsening of nonsymmetric

binary systems, and models for wealth exchange.
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Much attention has been devoted to understanding the
irreversible growth of aggregates through binary coales-
cence. This general mechanism arises in diverse branches
of physics, such as gelation [1], island formation in epi-
taxial surface growth [2], and stellar evolution [3]. By
a long-term research effort, considerable understanding
of this irreversible aggregation process has been achieved
[4,5]. In this Letter, we focus on a different growth mecha-
nism that appears to provide a natural description for the
evolution of city populations. This is preferential evapora-
tion from smaller aggregates and preferential condensation
onto larger aggregates

There are many examples where this evaporation/
condensation mechanism occurs in physics and in the
social sciences. The classic physics example is the late-
stage coarsening of a binary mixture in an off-critical
quench below but near the coexistence curve [6,7]. Here
the system separates into droplets of the minority phase
that are embedded in a matrix of the majority phase. Sub-
sequent growth proceeds through preferential evaporation
from smaller droplets, due to the effect of surface tension,
and subsequent condensation onto the larger droplets [6].

In the social sciences, it has been argued [8] that the
growth of cities may be due to migration from small to
large cities, as opposed to a view that emphasizes dif-
ferential population growth [9]. In a spirit closer to our
work, the wealth distribution of individuals was described
by a kinetic asset exchange model with preferential transfer
from poor to rich individuals in each transaction [10]. For
generic situations, the solution to the rate equation showed
that this mechanism gives very different kinetic behavior
from conventional aggregation.

Motivated by these fragmentary results, we investigate
a general class of migration-driven growth phenomena and
show that, at large times and for large aggregate sizes,
a comprehensive scaling theory can be developed with
a minimum of assumptions. This theory gives both the
growth rate of the typical aggregate size, as well as the
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asymptotics of the aggregate size distribution. Basic fea-
tures of our theory agree with data on the population dy-
namics of U.S. cities. An important feature of our theory
is that one may infer the general form of the migration
rates from observations of the aggregate size distribution.
For phenomena such as the city population distribution or
the wealth distribution, we may thus hope to predict ba-
sic aspects of the dynamics in systems for which we have
little a priori knowledge of underlying microscopic driv-
ing mechanisms.

The model that we study is defined as follows. Let
aggregates A; be characterized only by their mass j, or
equivalently, by the number of individuals that comprise
them. These aggregates evolve according to the following
irreversible reaction

Ay + A all) Ag—1 + A k=1. (D

That is, a monomer (or equivalently, one person) leaves a
smaller aggregate of size k and joins a larger one of size
[ with rate K(k;[). This generalizes the asset exchange
model of Ref. [10], where a restricted class of reaction
rates K(k; ) were considered. More generally, migration
could also go from a larger to a smaller aggregate. The
symmetric limit, where the migration direction does not
depend on the relative sizes of the two aggregates, leads
to a diffusive-like kinetic universality class. We defer the
investigation of this general system to a future work. In-
stead, we focus on the situation where there is preferen-
tial migration from small to large aggregates. In fact, any
migration bias leads to scaling behavior for the aggregate
size distribution identical to that of complete bias, as em-
bodied by Eq. (1).

We now make the assumption of spatial homogeneity, so
that the system is fully characterized by the concentrations
c;(r) of aggregates A; of size j at time . We also assume
that the law of mass action applies so that the time depen-
dence of the aggregate concentrations may be described by
the following rate equations:
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) 1 «
cj(t) = 5 k%1K(k;l)Ck(t)Cl(t)
O — 1], (2

X [8kj+1 + O1j-1 —
The various delta-function terms enforce the constraint that
the size of each aggregate changes by *1 in a single reac-
tion. The initial condition may be taken to be ¢;(0) = §; 1,
but any initial condition may equally well be considered,
provided it is rapidly decaying in j.

From these equations, we can immediately draw several
important conclusions. First, there are no equilibrium so-
lutions. Rather, the size of aggregates grows continuously
and each c;(¢) eventually goes to zero as t — . Second,
the total mass contained in the aggregates is (formally, at
least) conserved. That is,

d o0
— > jei() = 0, 3)
dr =
if the necessary interchanges between the infinite sums
in this equation can be justified. Here we shall confine
ourselves to this mass-conserving case. For definiteness
we normalize the total mass to unity.

We now make the conventional scaling ansatz for the
large-time behavior of ¢;(¢) [5]. We assume that there
exists a well-defined typical aggregate size s(¢) at time ¢

such that

cj(t) = j20(j/s(1). 4)

Here the exponent —2 follows directly from the condition
that the total mass is conserved, as discussed, for example,
in [4]. We further assume that the reaction rates K(k; /)
are homogeneous of degree A, or at least, that they are
asymptotically so in the limit of large sizes. That is

K(ak;al) = a’K(k; D)[1 + o(1)]. (35)

In the context of city population growth, the homogene-
ity exponent A can be given the following interpretation.
When the populations of two cities are scaled by some fac-
tor, there are both more susceptible migrants in the smaller
city and potentially more reasons to move to the larger city.
It is then natural that the overall migration rate varies as a
power law in this scale factor. Exceptions to this behavior
typically involve the existence of a cutoff size that sepa-
rates two qualitatively different kinds of behaviors.

Substituting the scaling ansatz (4) into Eq. (2), we find
that s(¢) satisfies 5(t) = s(¢)*~!, with asymptotic solution,
for A < 2,

s(r) o [(2 = Ve, (©)
Defining z as the growth exponent of s(¢), we thus have
1
= —. 7
g (N

This growth exponent can also be obtained by adaptation
of a back-of-the-envelope estimate for the typical size in
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irreversible aggregation. In aggregation, the reaction of
aggregates of typical size s leads to a growth As of the
order of s in a time At of the order of 1/(concentration X
s~). Here the concentration scales as 1/s and s~ is the
inverse reaction rate between typical-size aggregates. This
leads to § ~ s*, from which s ~ '/~ For migration-
driven growth, As is now of the order of 1 in the time
At. This gives s ~ s*7!, thus reproducing the growth
exponent of Eq. (7).

On the other hand, if A > 2, a power-law decay of the
c;(t) in j sets in at finite time. This feature invalidates the
mass conservation statement and hence the scaling form of
Eq. (4). The limiting case A = 2 can be treated within our
scaling formulation, but must be handled with particular
care, as we discuss below. This pattern of behavior for
the time dependence of the typical size parallels that of
conventional aggregation, except that the size exponent in
aggregation is z = 1/(1 — A) and a finite-time gelation
transition occurs for A > 1 [1,4]. Note also that when the
migration rate is symmetric, a scaling analysis similar in
spirit to that just presented shows that the mean aggregate
size grows as t'/G~Y for A < 3. Thus even migration
without population bias leads to growing aggregates, albeit
at a slower rate than if a bias towards larger aggregates
exists.

Also from the scaling ansatz, we find, after some non-
trivial algebra, that the scaled aggregate size distribution
®(x) obeys

d®d(x) _ _xi[q)(x)\lf(x)}
dx dx x2 ’

(8a)
with
WV (x) =f0 %[K(x;y) — K(y;x)]®(y).  (8b)

From these equations the basic qualitative behavior of
®(x) can be deduced. Note that only the antisymmetric
part of K(x;y) contributes to the scaling limit. Without
loss of generality, we can now assume that K(k;1) = 0 for
k > 1. From Eq. (8a) it follows that ®(x) can be discon-
tinuous whenever W(x) + x becomes zero. In particular,
at such a point x., ®(x) can be consistently set to zero for
all x > x.. As long as ®(x) is different from zero, how-
ever, (8a) can be integrated to yield

Aixzex |:_ f ' diy} 9)
v L Ly v )
Here A and x are arbitrary constants chosen so that

oo q) oo
f Ly)dy = > jej(0) = 1. (10)
0 y i=1

An important feature of ®(x) is its behavior for small
values of x. To quantify this, we define the exponent 7
through

d(x) =

d(x) o« x27[1 + o(1)]. (11)
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With this definition, one has c;j() ~ j 7 for | < j <
s(1), as well as

i)~ @M= Nk j<s@)]. (12
This defines the exponent w.

To proceed further, we introduce another fundamental
exponent that completes the scaling characterization of the
reaction rates K(k;1), namely,

K(;0) = 1** (1 > »). (13)
This is entirely analogous to the corresponding definition
in conventional aggregation where the form of the clus-
ter size distribution depends on the relative rates of small-
small, large-large, and large-small reactions [4]. With
these definitions, we find, after detailed analysis of Eq. (9),
four different classes of behavior:

(1) Type1l: A = 1, u > 1. Inthis case 7 = A and hence
w = 1.

(ii) Marginal: A > 1, u = 1. Here it is not possible to
make simple statements about the value of 7. Rather, 7
depends on the complete shape of ®(x) and therefore on
the very specific form of the reaction rates.

(iii) Type 2a: A <1, uw = (1 + A)/2.
r=pandw =2 — w)/2 — A).

(iv) Type 2b: A < 1, (1 + A)/2 = u < 1. In this case
r=00+XN)/2andw =3 — A/ — 2A).

For the complementary large-x behavior of ®(x), we
now show that in almost all cases ®(x) vanishes beyond a
certain critical value x, of its argument. Indeed, suppose
the contrary. It then follows from Eq. (8b) that W(x) —
—oo ag x — . This can happen in three ways: either W(x)
varies faster than linear, slower than linear, or linearly in
x. In the first case, Eq. (9) would indicate that ®(x) < 0
for large x, which is impossible. In the second case,
®(x) would go to a constant as x — <o, in contradiction
to Eq. (10). Thus the only viable possibility is the third
case, which occurs if A — u = 1.

A more thorough investigation is required to determine
whether it is possible to find a consistent large-x behavior
for ®(x) in this last case. If so, then ®(x) would have
a power-law decay such that the integral in Eq. (10) still
converges. However, in all other cases, Eq. (9) must cease
to be valid at some point and the function ®(x) must
vanish identically afterwards. This can happen in two
different ways: Either x + W(x) has a simple zero at
some point x,. and the function ®(x) jumps from its value
at x. to zero, which is possible according to Eq. (8a), or
else the function @ (x) goes smoothly to zero at x. as a
consequence of Eq. (9) and the double zero of x + W(x)
at x.. These results closely correspond to those of the
Lifshitz-Slyozov-Wagner (LSW) theory of coarsening [6],
as well as to models of asset exchange [10].

A special case that can be solved exactly is the case
p = A. For this situation, we find

In this case
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[x = (2 — )V,

otherwise.

d(x) = x>
dx)=0

(14)

If A > 1, this case belongs to a system of type 1 listed
above, whereas if A < 1, this case belongs to type 2a.
For either alternative, the correct exponent 7 is predicted.
Note further the discontinuity in ®(x) that indeed occurs
exactly at the point where x + W(x) vanishes. Many other
cases can be handled similarly and will be presented in a
forthcoming publication [11].

A situation that requires a more refined analysis is
A =2and u > 1. For these parameter values, it follows
that 7 = 2, which is incompatible with the normalization
condition Eq. (10). To obtain valid results, we need to
modify the scaling ansatz as follows:

jir
g PG/, ()

cj(t) =

It follows that

s(t) = exp[v/2(t + B)], (16)

where B is some constant. The function ®(x) then has the
normalization ®(0) = 1 and satisfies a modified version
of Eq. (8a).

Let us now discuss how our scaling theory applies to
LSW coarsening [6]. For this system, the migration rate
K(i; j) is given by the product of the rate at which a particle
evaporates from an aggregate of mass i and the probability
that it reaches an aggregate of size j. In the evaporation
step, the diffusive current J is Ac/R(i), where Ac is the
difference between the monomer concentration near the
interface and in the bulk. This difference is proportional
to R(i)"!, since it is due to surface tension. The current
J is therefore of the order of R(i)~? and thus the rate at
which particles leave an aggregate of size i is proportional
to JR(i)¢™!, that is, to R(i)? 3. Further, the probability
of reaching an aggregate of size j in three dimensions is
simply proportional to its volume R(j)¢. We therefore find
for the overall migration rate

K(i;j) = R()? PR = i am

From the definitions of A and w in Egs. (§) and (13),
it follows that the system is of type 2a, from which one
obtains z = d/3 and 7 = 1 — 3/d. These indeed corre-
spond to the LSW predictions, in which the characteristic
cluster radius increases as 7!/3 [6] and the number n(R) of
clusters of radius R < R, (¢) varies as R? [12]. Our the-
ory also correctly predicts that the scaling function van-
ishes beyond a certain value of the scaling variable. On
the other hand, the migration rate of Eq. (17) is not pre-
cise enough to ensure that our scaling theory reproduces
the same functional form for ®(x) as that of the detailed
LSW theory.

To apply our theory meaningfully to the evolution of
city populations, it is necessary to incorporate the effects
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of demographic population growth. Over intermediate
time scales (of the order of decades), demographic growth
typically gives a population that increases exponentially
with time. Such a behavior can be modeled by allowing
the process Ay — A+ to occur at rate ky. When demo-
graphic growth and migration occur together, the scaling
ansatz for the underlying rate equations needs to be modi-
fied accordingly. We have found that the appropriate scal-
ing ansatz for this more realistic situation is

cj(t) = j 2 ®(j/s(1). (18)

With this hypothesis, the functional form of ®(x) turns out
to remain the same as the case of no demographic growth,
but now the typical city population grows as

s(t) ~ e?/@N, 19)

Hence we arrive at the central conclusion that the typical
city size grows much faster than the population of the
country as a whole as A approaches 2.

The city population distribution in many countries is
consistent with a power-law form in which the exponent 7
is close to 2 [8,9,13]. Our scaling theory then requires that
the homogeneity exponent A is also close to 2. Thus from
Eq. (19), the typical city population should increase much
faster than the overall population. This is confirmed quali-
tatively by data for the populations of various U.S. cities
during their early histories [14]. The population of essen-
tially every major U.S. city grows much faster than the
U.S. as a whole over considerable time range. However,
as cities reach maturity, their growth may slow or their
population may even decline for reasons unrelated to pref-
erential migration to still larger cities.

In summary, we have introduced a simple kinetic de-
scription for migration-driven growth and developed a scal-
ing theory that determines the large-time behavior for the
aggregate size distribution. Asymptotic results depend
only on rudimentary properties of the reaction rates, most
notably the homogeneity index A. The typical aggregate
size grows as 1'/C=N while several distinct behaviors
emerge for aggregate size distribution. Our results rep-
resent the counterpart of the scaling theory of irreversible
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aggregation to migration-driven growth. Finally, we have
suggested a connection between migration-driven growth
to the distribution of city populations and found a qualita-
tive correspondence between model predictions and recent
data on U.S. cities.
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