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Tank Treading and Unbinding of Deformable Vesicles in Shear Flow:
Determination of the Lift Force
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Deformation and tank-treading motion of flaccid vesicles in a linear shear flow close to a wall are
quantitatively studied by light microscopy. Velocities of bounded vesicles obey Goldman’s law estab-
lished for rigid spheres. A progressive tilt and a transition of unbinding of vesicles are evidenced upon
increasing the shear rate, y. These observations disclose the existence of a viscous lift force, F;, de-
pending on the viscosity 7 of the fluid, the radius R of the vesicle, its distance / from the substrate,
and a monotonous decreasing function f(1 — v) of the reduced volume v, in the following manner:
F; = ny(R3/h)f(1 — v). This relation is valid for vesicles both close to and farther from the substrate.
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A lipid vesicle is a closed, fluid and water-permeable
membrane filled by an aqueous solution. A number of
theoretical works have recently attempted to predict the be-
havior of weakly adhesive vesicles in a bounded shear flow
[1-4]. This problem is far from trivial due to the ability
of flaccid vesicles to undergo flow-induced deformations
(free-interface problem). Indeed, vesicle shapes are not
given a priori. They are governed by the hydrodynamic
forces, the internal fluid viscosity, the bending elasticity,
and the constraints of fixed volume and area (nonexten-
sibility of the membrane). For instance, the behavior of
vesicles in shear flow differs from that of liquid droplets,
whose area can vary and whose shape is governed by the
surface tension [5]. Rheological properties of vesicles are
at the origin of two types of motion predicted under flow:
the flipping expected when the contrast of viscosity be-
tween the inner and the outer fluid is high (red blood cells),
and the tank-treading motion with fixed vesicle orientation
predicted for low viscosity contrast [4,6]. In this latter sit-
uation, theories predict that vesicles are asymmetric and
experience a lift force, which can lead to their unbinding
from the substrate [1,2]. The quantitative determination of
this lift force appears as a basic stage on the way to under-
standing the behavior of erythrocytes and leukocytes in the
blood flow, where they are subjected to strong shear forces.
This lift force may play a significant role in the early stage
of the inflammatory response, when a leukocyte leaves the
blood flow to adhere and roll onto the endothelium [7,8].
However, the law of variation of the lift force with its driv-
ing parameters has not been established up to now, due to
a lack of fast 3D-numerical approaches and of extensive
experiments. Recently, unbinding of one weakly adhesive
vesicle in a shear flow has been reported without detecting
any shape deformation [9].

In this Letter, we describe in detail the behavior of non-
adhesive settled flaccid vesicles in a shear flow close to a
wall. By direct side-view observation, we describe quan-
titatively and we interpret vesicle motion: unbinding, tank
treading, and sliding. This allows us to reveal and to deter-
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mine the lift force for which we propose a law of variation,
relying, for the first time to our knowledge, on a complete
set of experiments.

Giant phospholipidic vesicles were swollen from
L-a dioleyol-phosphatidylcholine using the electrofor-
mation method [10]. They were prepared in sucrose
solutions of various concentrations (50, 100, 200, and
250 mM) and diluted in glucose solutions (50—-290 mM)
of higher osmolalities during at least one hour in order
to slightly deswell the vesicles. However, at the scale of
a few minutes (typically the time of a flow experiment),
vesicle membranes can be considered as impermeable.
All solutions were made at pH = 7.4. The flow was
applied using a syringe pump in a parallelepiped flow
chamber with four optical faces (1 X 10 X 45 mm). The
laminar shear rate was calibrated using suspensions of
2 pum diameter latex beads. Tipping the microscope at
90° and working at low-angle incidence allowed us to
observe well-defined side-view images of both vesicles
and their reflections on the substrate. Image analysis was
performed using an image software (NIH, 1.62c).

Vesicles were gently injected into the chamber, allowed
to settle, and observed at rest. A shear flow was then ap-
plied in the chamber. The shear rate was slowly increased
step by step, so that vesicles reached a constant velocity
during each step. At the end of the experiment, the flow
was stopped and we checked that the vesicles retrieved
their initial shape.

A typical experiment is illustrated in Fig. 1 for one
vesicle. At rest, it is deflated and axisymmetric [Fig. 1(a)].
It undergoes a shape deformation when a shear rate y
is applied: its fore-aft symmetry is lost and a pro-
gressive tilt is observed. The vesicle slowly moves
along the flow direction, keeping a stationary shape
and a fixed orientation [Fig. 1(b)]. When the shear rate
progressively increases above a value vy,., the vesicle
unbinds [Fig. 1(c)] and moves away from the substrate
Figs. 1(d) and 1(e), while its shape tends to a prolate ellip-
soid [11].
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FIG. 1.

Side-view image of a vesicle (R = 31 um, reduced volume v = 0.94, weight P = 16 pN). The lowest image is the

reflection on the substrate: (a) at rest, (b) at shear rate 9 equal to 0.4 s~ !, (¢) 0.9 57!, (d) 1.1 s}, and (e) 2.5 s~!. The white line

is the direction of the longest axis of inertia.

It is noteworthy that all quasispherical vesicles were not
deformed by the flow and remained settled on the substrate
under large shear rate, up to y = 8 s 1.

Shape analysis and orientations.—The enclosed
volume V and the surface area S of each vesicle
were determined from their contour at rest by a method of
azimuthal integration [12]. We characterized each vesicle
by its effective radius, defined as R = 3V /4m)'/3,
and its reduced volume (dimensionless number),
v = V/[;—‘W(%)WZ], which measures its state of
deswelling (v = 1 for a sphere). Vesicle deformability
increases with (1 — v). The integration method gave
the position of the vesicle center of mass during the
motion. It also yielded the direction of its two principal
axes of inertia, the angle 6 of inclination of the longest
axis of the vesicle with respect to the flow direction,
and the vesicle-substrate distance 4. When the shear
rate increases up to ., the inclination angle 6 increases
rapidly. At 7., the value of the tilt  is very close to a
limiting value 6;, which is reached when the wall-vesicle
distance is of the order of magnitude of one vesicle
radius. The value of 6; depends only on the reduced
volume v. This result can be understood by considering
that the vesicles experience torques due to the shear flow
and to the tank-treading motion. The balance of these
two torques, both proportional to vy, results in a steady
tilt independent of the shear rate. Variation of ; with
v is in good agreement with theoretical predictions [13]
and observations [14] concerning vesicles in nonbounded
shear flow. The vesicle shape is therefore not affected by
the wall at distances larger than approximately one radius.

Sliding and tank treading.— Vesicle tank treading was
clearly observed from the rotational motion of one de-
fect linked to the membrane. This motion allowed us to
measure the membrane angular velocity w for two vesi-
cles. We also measured the translational velocity V of
the center of mass along the flow direction for all studied
vesicles. Variations of V and wR versus the shear rate y
are linear as long as the vesicles remain bounded to the
substrate (Fig. 2). The ratio @ R/V was found equal to
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0.49 and 0.51 for two vesicles of radii 14.8 and 18 wm,
respectively. These values show that vesicles roll and
slide along the wall in the same proportion. A combina-
tion of sliding and rolling has been previously reported on
vesicles moving close to a wall under gravity [15].

In order to further explore the laws of vesicle motion,
we plotted the variations of the ratio V /vy versus R for all
studied vesicles (Fig. 3). The data fall on a single curve
independent on the reduced volume of the vesicles: data
obtained on quasispherical nondeformable vesicles lie on
the curve together with that on deflated vesicles. This
feature corroborates recent 2D-numerical simulations [16],
which show that the dominant term of the hydrodynamic
dissipation in the motion of moderately deflated vesicles,
deviates less than 5% from that of a sphere. These results
led us to use the Goldman model proposed for the motion
of rigid spheres [17], in the limit hy/R << 1, where hg
is the distance between the surface of the sphere and the
substrate. The model yields
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FIG. 2. Translational (V) (e) and rotational (w R) (o) velocities
versus shear rate y (R = 18 um, reduced volume v = 0.95,
weight P = 4.2 pN).
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FIG. 3. Variations of the ratio of the velocity to the shear rate

V /v versus R. Solid line: fit with Goldman’s equation [Eq. (1)]
with separation distance hy = 2.4 um. (o) deformed vesicles
v < 0.985 (some reduced volumes are written on the plot); (e)
quasispherical vesicles v = 0.985.

Translational velocity data were fitted using Eq. (1) with
one single adjustable parameter ho. Good agreement is ob-
served, as shown in Fig. 3, yielding hp = 2.4 = 0.4 um.
According to the Goldman model, the ratios @R/V of
spheres of radius 14.8 and 18 wm, distant at iy = 2.4 um
from the wall, are equal to 0.485 and 0.50, respectively.
These values are in good agreement with the observed val-
ues (0.49 and 0.51, respectively) and support the use of
this model for vesicles. We will come back to the order of
magnitude of &g later in this Letter.

Unbinding and lift force.—Nonspherical vesicles
unbind when the shear rate exceeds a threshold value ..,
depending on vesicle weight, radius, and reduced volume.
The value . was determined for each vesicle by two inde-
pendent methods: first, from the crossover between the two
velocity regimes (V versus y curves) and, second, from
direct measurement of the distance /4 on side-view images.
Both methods yielded the same result. The unbinding
phenomenon discloses the existence of a lift force, Fy,
acting on nonspherical vesicles, and which is of viscous
origin. In the unbound regime, the distance & self-adjusts

so that the lift force counterbalances the vesicle weight cor-

rected by the buoyancy of the fluid, F; = P = @A peg,

where Ap is the density difference between the internal
sucrose solution and the external glucose solution of the
vesicles and g is the acceleration of gravity. The value of
the lift force experienced by a vesicle is therefore known
for each detached vesicle. It was found to range from
0.2 to 150 pN, depending on the weight and the reduced
volume of the vesicles. Values of y,. as small as 0.3 s~!
have been observed, for instance, for two vesicles of
weight equal to 2.9 and 0.74 pN and reduced volume v
equal to 0.94 and 0.98, respectively.

By using dimensional arguments, the lift force can be
written as F; = 5y R?3, where 7 is the external fluid vis-
cosity and % is a dimensionless function which depends
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on geometrical parameters: the ratio R/h and the shape of
the vesicle. More precisely, the fore-aft curvature differ-
ence induced by the flow produces an asymmetric pressure
field beneath the vesicle, giving rise to the lift force [2].
Local membrane curvatures are not measured here. Nev-
ertheless, we propose, in a first stage, to account for the
deformed shape of vesicles by the global parameter v. A
single parameter is sufficient since vesicle shapes are y
independent in the detached regime. The functional form
of the lift force is then expected to be

F,=P= n)’/RZE<§,v>. )

We explored the R and / dependence and we checked the
linear -y dependence of F; by analyzing two situations.

At the unbinding transition, the vesicle-substrate dis-
tance is a constant, i1 = hg. The use of vesicles of various
weights, radii (10 < R < 70 um), and reduced volumes
(0.86 < v < 0.99) permitted us to test the v, dependence
in a range of one decade (0.3 < y. < 2.2 s™!). We deter-
mined the reduced force which, plotted versus (1 — v),
yielded a master curve of variations where lie all data
points: the best plot was obtained with the reduced vari-
able F;/myR>. In practice, it first appeared, in agreement
with Eq. (2), that F; should be imperatively reduced by
n7; the R3 dependence was set in a second step.

The dependence of the lift force with the distance & was
determined beyond unbinding. In this regime, Eq. (2) im-
plies that 3(h) must change like P/y. For eight vesicles,
carefully studied in this regime, 2 was found to vary
linearly with y as it clearly appears in Fig. 4. Conse-
quently, the preceding argument imposes that the function
3, must vary with 1/h for a detached vesicle.

The lift force therefore writes as

. R?
Fz=n77f(1 - v), 3

where f(1 — v) is a dimensionless function of the reduced
volume. Finally, we represent in the same plot the varia-
tions of (F;/mR3?) (h/y) versus (1 — v) for vesicles at
the unbinding threshold and farther away from the surface
(Fig. 5). The ratio h/y was determined from the slopes
shown in Fig. 4, for the eight vesicles observed far from
the wall. For the other vesicles, h/y was determined at
the unbinding threshold (y = +y.) by adjusting & = hg in
order to superimpose the data to that of the eight previ-
ous vesicles. We found hg = 2.4 um, which is in good
agreement with the value obtained from the previous fit
of the curve V/y versus R. It supports our hypothesis
that the kinematics along the flow direction of deformable
vesicles can be described in first approximation with the
Goldman model. It strongly suggests that the water film
beneath vesicles under shear flow is thick, of the order of
a micron. This result differs from that recently reported
on quasispherical vesicles either at rest or moving in qui-
escent fluid (ko = 50 nm) [15,18]. This point has still to
be understood.
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FIG. 5. Variations of (F;/nR?) (h/7y) versus (1 — v). (Open

symbols) vesicles at the unbinding threshold, y = y.: () small
radii R < 20 um; (o) intermediate radii 20 = R = 30 um;
(A) large radii R > 30 um. (e) Detached vesicles away from
the substrate, ¥ > .. The three ranges of R are displayed to
check the R? dependence of the lift force F;. Some typical val-
ues of Fy, y., and R are presented in the table (shown in inset).

Let us briefly discuss Eq. (3). The linear y dependence
results from the steady tilt of the vesicles observed at un-
binding, as clearly explained recently in Ref. [3].

It is worth noting that the R3/h dependence we found
for the lift force is dimensionally consistent. It is valid
for vesicles both close to and farther from the wall, in
a domain where the lubrication analysis should not hold.
The theoretical understanding of this dependence is still
an open question. In particular, it cannot be derived by
applying the Stokes law in infinite medium to the vertical
drift velocity, which would lead to a variation in R*/(R +
h)?, as predicted in Ref. [3].
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FIG. 4. Variation of distance & to the wall versus the shear
rate y for two vesicles moving away from the wall. (e) R =

17 pum, reduced volume v = 0.985, weight P = 0.2 pN. (o)
R =20 pm, v = 093, P = 5.3 pN.
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Concluding remarks.— We described the main features
of the behavior of vesicles in a linear shear flow close to
a wall: (i) the tank-treading motion; (ii) the lubrication
film, which we found thick; (iii) the threshold detachment;
(iv) the lift force, whose functional dependence on the rele-
vant parameters was established for detached vesicles. Our
results, obtained on vesicles whose inner viscosity is that
of the external fluid, should apply to tank-treading cells,
such as red blood cells in viscous medium. A further study
we hope to report in the near future will explore, on the
one hand, the effects of a high contrast viscosity between
the inner and the outer fluids and, on the other hand, the
effects of attractive interactions between the vesicles and
the substrate. These two features are indeed currently ob-
served in living cells.

We thank D. Constantin and J. Beaucourt for experi-
mental help, and Dr. T. Biben and C. Misbah for fruitful
discussions and help with the numerical treatment.
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