
VOLUME 88, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 11 FEBRUARY 2002

068101-1
Model for Bone Strength and Osteoporotic Fractures
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Inner porous regions play a critical role in the load bearing capability of large bones. We show that
an extension of disordered elastic networks [Chung et al., Phys. Rev. B 54, 15 094 (1996)] exhibits
analogs of several known mechanical features of bone. The “stress backbones” and histograms of stress
distributions for healthy and weak networks are shown to be qualitatively different. A hereto untested
relationship between bone density and bone strength is presented.
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Osteoporosis is a multifaceted metabolic disease that re-
duces bone strength and leads to a significant number of
fractures occurring in older adults [1,2]. Unfortunately,
therapeutic agents available for the prevention and treat-
ment of osteoporosis often induce adverse effects in pa-
tients [3]. Thus, noninvasive diagnostic tools to determine
the need for therapeutic intervention are essential for ef-
fective management of osteoporosis. Simple models can
form a useful complement to traditional studies of osteo-
porosis. In this Letter we introduce such a model, and
describe some of its features.

Large bones such as thigh bones and vertebrae consist
of an outer cylindrical shaft (cortex) and an inner porous
region (trabecular architecture) [2]. The cortex is made of
compact bone and has a thickness of several millimeters.
The structure of the trabecular architecture (TA) is that of a
disordered cubic network of “trabeculae” whose axial and
cross sectional dimensions are of the order of 1 mm and
0.1 mm, respectively [2] (see Fig. 1).

Routine activities (e.g., climbing stairs) inflict micro-
damage on bone. Material in the neighborhood of these
fractures is resorbed by a class of cells known as “osteo-
clasts.” Their presence attracts a second group of cells,
“osteoblasts,” which help regenerate lost bone [2]. This
sequence of events, referred to as bone remodeling, re-
duces the accumulation of microdamage shallower than
about 0.1 mm [3,4]. The full restoration of bone strength
typically takes a period of 2–3 months.

In the cortex, deeper fractures, created during occasional
trauma, are not repaired through remodeling. The resulting
microfracture accumulation leads to lower bone quality
and fracture toughness [4,5], reducing the load bearing
capacity of the cortex with aging.

Since the thickness of trabecalae is �0.1 mm, fractures
that do not sever them can be remodeled. Clinical studies
also indicate that perforated trabeculae are seldom regen-
erated [6] and that cross sections of those surviving change
little [7]. Thus, even though the connectivity of the TA re-
duces with aging, the surviving trabeculae can (mostly) be
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expected to retain their quality. Indirect evidence for this
conjecture is provided by mechanical studies which have
shown that a TA from a given skeletal location fractures at
a fixed level of strain independent of the age of the bone
[8]. (In contrast, the breaking stresses of such samples re-
duce with age, though much less than the corresponding
degradation of a cortex.) Because of the efficacy of its
remodeling, the TA becomes the principal load carrier in
bones of older adults.

Reductions in estrogen and testosterones lead to in-
creased bone turnover and an imbalance in remodeling.
The accompanying weakening of a TA increases the sus-
ceptibility of bone to fracture [9]. The management of
osteoporosis can be greatly aided by the availability of
characteristics that can identify this weakening.

Bone mineral density (BMD), or the effective bone
density, is the principal clinical measurement used as a
surrogate of bone strength [10]. It is estimated by using

FIG. 1. A cross section of the TA from a 70 year old female.
Observe that the trabeculae form a disordered cubic network.
The network loses connectivity with aging.
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x-ray imaging via an evaluation of the opacity of bone.
Large clinical studies have shown an exponential increase
in fracture incidence with the loss of BMD [11]. Among
other features known to be relevant for bone strength is
the architecture of the porous bone. Structural properties
of a TA such as the average width of the trabeculae,
mean trabecular spacing, connectivity of the network, and
its fractal dimension have been proposed as additional
surrogates of the ultimate (or breaking) strength of bone
[7,9,12]. Alternative approaches to estimate bone strength
involve the use of finite element computations [13] and
cellular models [14]. All previous analyses have been
carried out on TAs from bone samples. This makes it
nearly impossible to isolate the effects of individual fac-
tors on bone decay.

We introduce a simple mechanical model of a TA to
complement these analyses. Since model parameters can
be varied independently, we expect the task of elucidating
the essential differences between healthy and osteoporotic
bone to be simplified. Possible diagnostic tools for os-
teoporosis can then be identified by using their ability to
quantify these differences.

Images (e.g., Fig. 1) suggest that disordered elastic net-
works [15] may be used to model TAs. Our initial stud-
ies were conducted on a square network of linear springs.
An unstressed configuration was generated by displacing
the vertices of the square grid (of side D) randomly by
an amount less than DD. Externally imposed deviations
increased the potential energy of the network via a com-
bination of elastic [ 1

2 k�Dl�2] and bond bending [ 1
2k�Du�2]

contributions. Here Dl and Du are changes in the
length of a spring and the bond angle between adjacent
springs, respectively [15]. The differences between tra-
beculae are modeled by assigning random values for k and
k; specifically k [ �k0�1 2 he�, k0�1 1 he�� and k [
�k0�1 2 hb�, k0�1 1 hb��, where he and hb are predeter-
mined. Since the network is constrained to lie on a plane,
torsional effects are ignored. The following conditions are
included to model known features of bone:

(i) As discussed above, the fracture criterion for trabec-
ulae should be based on the level of strain [8]. Follow-
ing mechanical studies of fracture, we assume that fracture
strains g are distributed on a (two-parameter) Weibull
distribution [16,17], with cumulative probability

C�g� � 1 2 exp�2�g�ge�m� . (1)

An elastic element which is strained beyond its fracture
strain is removed from the network along with all bond-
bending forces it contributes to. The bonds are assumed to
fracture when changed beyond an amount distributed on a
second Weibull distribution (with parameters gb and m);
the bond and its side with the smaller spring constant are
removed from the network.

(ii) Osteoporosis is modeled by a random removal of
springs from the network. The probability of removal,
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n, is used to quantify the “level of osteoporosis”; links
eliminated at a given value of n are not reintroduced later.
The surviving springs are assumed to retain their strength.

(iii) Clinical studies show a dramatic increase of bone
strength (disproportionate to the increase of BMD) follow-
ing therapeutic intervention [11]. It is explained by assum-
ing that bone remodeling is preferentially carried out in
locations of high stress (Wolff’s law [18]). In the model,
elasticity of the spring under maximum strain is increased
by a small fraction p; those strained by a fraction f . f0

of the maximum are strengthened by p� f2f0

12f0
�b. This algo-

rithm is implemented over repeated applications of a given
external strain.

Below, we discuss the properties of networks subjected
to uniform strain z , reached through a sequence of small,
adiabatic increments [19]. When elastic elements are re-
moved from the network due to fracture, equilibrium is re-
calculated prior to increasing z . The sides of the network
are constrained to move vertically, as is the case for a TA be-
cause it is connected to the cortex. The force T �z � required
to sustain a given strain is estimated by adding the vertical
forces on the upper surface. Results analogous to those
presented are observed under four-point bending which is
a leading mechanism of fracture of long bones [20].

The stress-strain relationship T �z �, which is initially
linear becomes nonlinear beyond the “yield point” and
reaches a maximum (ultimate stress) Tmax prior to failure
of the network. The yield point coincides with the first
fracture of springs. Indirect evidence has been presented
to suggest that yielding of a bone coincides with cracking
of trabeculae [21]. Failure of a network is accompanied by
a crack propagating across the entire network.

Figure 2(a) shows the stress distributions on a “healthy”
network strained below yield. Springs experiencing large
stresses (forming the “stress backbone”) are distributed
evenly throughout the network. The histogram of stresses
for this configuration contains a broad peak, similar to
histograms for elastic networks [22]. When z is increased,
the stress backbone occupies a smaller subset following
the fracture of a group of springs. Similar changes have
been observed in elastic networks [23] and in finite element
computations on digitized images of bone [13].

The nature of the stress backbone is very different in
weaker networks;, i.e., those with larger values of n. As
shown in Fig. 2(b), the stress backbone for such networks
consists of a few coherent pathways. Beyond n . n0 �
20% there is no peak in the stress histogram. We expect
these differences to prove useful in identifying new diag-
nostic tools for osteoporosis.

In Fig. 2, the X’s denote long horizontal fractures, spe-
cifically, locations where four or more consecutive vertical
bonds are absent. They prevent the propagation of stress
in significant vertical slices, even when bond-bending
forces are included. When n is large, the stress backbone
can be seen to avoid these regions and, consequently,
contains only a small fraction of available bonds.
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FIG. 2. Stress distributions on 60 3 60 networks with D �
10.0, D � 0.1, k0 � 1, k0 � 5, hb � 0.5, ha � 0.5, ge �
0.05, gb � 0.1, and m � 5. For clarity only the compressed
springs are shown, and elements under higher stresses are rep-
resented by darker hues. (a) When a network with n � 15% is
strained by z � 4.0, the stress backbone is evenly distributed.
(b) In contrast, the stress backbone when n � 30% (z � 4.0)
consists of a few coherent pathways. The crosses denote loca-
tions with large fractures in the x direction.

The last observation can be used to estimate the decay of
bone strength with increasing n. Since an externally ap-
plied stress passes through every horizontal layer, we need
to consider stress propagation on each one-dimensional
slice. This “chain-of-bundles” model [17] further assumes
that the stress on each edge of a fracture containing k sites
is enhanced by a factor �1 1

k
2 �; i.e., the edges share the

load assigned to bonds in the fracture.
Consider an elastic network of size N 3 N . The proba-

bility of forming a fracture of length k (with links on either
side) is nk �1 2 n�2. Hence the size of the largest fracture
km (which occurs with a probability of �1 [27]) can be
estimated by

N2nkm �1 2 n�2 � 1 . (2)

For sufficiently large fractures, km � 22 lnN� lnn. In the
chain-of-bundles model, the stress on each side of this
fracture is �1 1

km

2 � T
N , where T is the externally applied
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stress. When this stress is the typical breaking stress of an
elastic element, the fracture will propagate. Thus Tmax is
related to n through

Tmax �
1

km
� 2 lnn . (3)

Figure 3 shows that the decay of Tmax in model networks
is consistent with this expression.

A similar analysis of “penny-shaped” fractures in three-
dimensional networks gives

Tmax �
p

2 lnn . (4)

Results from mechanical studies of bone samples (with
an assumed power law relationship) show that Tmax �
�BMD�2a , where a � 2.6 [25]. There is no theoretical
basis for this power law, and Eq. (4) also provides a satis-
factory fit to the data. More sensitive experiments need to
be conducted to discriminate between these possibilities.

We finally discuss “therapeutic regeneration” (intro-
duced above) of a network. There have not been quanti-
tative studies on this issue, but it has been suggested that
therapeutic regeneration will be more effective in increas-
ing the strength of healthy bone [25]. This suggestion is
based on an assumed absence of hysteresis with changes
in BMD. The validity of this proposal can be tested in
the model system [26]. Figure 4 shows the fractional in-
creases of Tmax experienced by two networks that are
formed by degrading the same lattice by n � 10% and n �
20%. As seen in clinical studies, there is a dramatic en-
hancement of bone strength (� factor 2), disproportionate
to the increase of BMD (�2%). For the example shown, the
weaker network is seen to strengthen by a larger factor un-
der an increase of BMD. There are large fluctuations of the
enhancement between distinct networks, and in occasional
examples the growth of the stronger network is larger.

In this Letter, we have argued that an extension of elastic
networks can be used to model the inner porous regions of
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FIG. 3. The mean and standard error of the ultimate stress
Tmax for five networks with identical control parameters as a
function of n. The dashed line is the least squares fit.
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FIG. 4. The fractional enhancement of Tmax as a function of
the percentage increase of BMD under therapeutic regenera-
tion (with b � 2, f0 � 0.8) for two networks with n � 10%
(dashed line) and n � 20% (solid line).

bone. Since the latter is the principal load carrier in bones
of older adults, the model can prove useful in identifying
characteristics of osteoporotic bone.

Equation (4) is compatible with published data, but
more sensitive tests are needed to discriminate it from
a possible power law decay. Examples from the model
provide evidence that bone regeneration under Wolff’s
law is not compatible with the absence of hysteresis
in bone strength with bone density. In fact, generally,
regeneration is more efficient in strengthening networks
that are weaker.

We propose to use the model to identify new diagnostic
tools for osteoporosis, using characteristics that can dif-
ferentiate between stress backbones (Fig. 2). Preliminary
studies indicate that the ratio of responses of a network to
static and periodic strain is a suitable surrogate of bone
strength [27].
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