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A simple formula for the diffusion coefficient of liquid mixtures, expressed in terms of the work
necessary to create a characteristic free volume in the liquid, is presented in the spirit of the Arrhenius
activation theory and tested in comparison with available experimental data. If use is made of the generic
van der Waals equation of state, the free volume appearing in the formula for the diffusion coefficient
can be expressed in terms of the equilibrium pair correlation functions. The theoretical values for diffu-
sion coefficients agree excellently with experimental values with regard to the density and temperature
dependence of the diffusion coefficients of argon and krypton.
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Self-diffusion coefficients and diffusion coefficients are
basic transport coefficients, in terms of which other trans-
port coefficients can be expressed. A typical example is
the Stokes-Einstein relation. Similar relations have been
shown to hold for the bulk viscosities and thermal conduc-
tivities of monatomic and diatomic liquids in recent papers
[1] . Despite their importance in such phenomena the sta-
tistical mechanical theories of diffusion coefficients are not
well developed at present and the only reliable alternative
lies in molecular dynamics simulation methods [2]. Al-
though free volume theories of diffusion have been around
in literature [3—6] for a long time, the difficulty associated
with defining the free volume in a rigorous and practical
form and calculating it in a reliable accuracy by statistical
mechanics has rendered them impractical to use for gain-
ing molecular understanding of diffusion and relating them
to experiment.

The Cohen-Turnbull (CT) theory [6] is a free volume
theory that yields the self-diffusion coefficient D of a
simple liquid in the form

D = gerexp(—av‘/vy), (D

where v is the free volume per molecule, v¢ the character-
istic free volume per molecule, & an adjustable parameter,
and gct = ga(p)c with g denoting the geometric factor,
a(p) a quantity that is roughly the diameter of the cage
created in the liquid, and ¢ the mean gas kinetic speed.
Since gcr is akin to the mean free path expression for
the self-diffusion coefficient of the gas, in a recent paper
[7] on self-diffusion coefficients of simple liquids we have
identified it with the Chapman-Enskog (CE) self-diffusion
coefficient Dy, which may be further approximated by the
self-diffusion coefficient Dpy [8] of a hard sphere gas:
gor = Do = DY, = 1.019(3/8p a2)\JksT /m, where kg
is the Boltzmann constant, p is the density, and o is the
diameter of the molecule of mass m. This identification
yields D in the form

D = Dgexp(—av‘/vy). )
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Even with this identification of gcp with either Dy or Dgs,
formula (2) does not yield D(p, T') unless vy is known in
terms of p and T as well as molecular parameters charac-
teristic of the liquid in question.

We have shown in Ref. [7] that vy can be calculated
rigorously by statistical mechanics with the help of the
generic van der Waals (GVDW) equation of state [9]

[p + Alp,T)p*1[1 — B(p,T)p]l = pksT, (3)

where p is the pressure, and A(p, T) and B(p, T), generally
depending on p and T, are called the GVDW parameters
which are given in terms of the pair correlation function
and, in the low density limit, reduce to the original van
der Waals parameters a and b in the van der Waals equa-
tion of state (p + ap?)(1 — bp) = pkpT. Equation (3)
is rigorously equivalent to the virial equation of state. Its
derivation will be indicated for the case of a binary lig-
uid mixture later. The parameter B in particular is closely
related to the positive repulsive potential energy and there-
fore is a good measure of the excluded volume. Therefore
the free volume v, can be defined in terms of B:

vy =v[l — B(p,T)p], “4)

where v = 1/p, the specific volume. Thus, if we identify
v¢ with the molecular volume vy = 7¢3/6, then with the
help of Egs. (3) and (4) D in Eq. (1) can be written as

D = Dyexp(—W /kgT), %)

W = avolp + A(p,T)p*], ©6)

where Dy may be replaced by D}, in the CE kinetic theory.
In this manner, with gct = Dy, v¢ = vy, and the defini-
tion of vy by Egs. (3) and (4), the self-diffusion coeffi-
cient D in the CT theory is now fully elevated to the level
of a statistical mechanical theory, except for the adjustable
parameter «, which was found to be about unity [7] and
independent of p but weakly dependent on 7. In Ref. [7]
formula (5) was shown to be excellent in accuracy with
regard to the density and temperature dependence of D.
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The quantity W in the exponential factor in Eq. (5) is
the work required to create a characteristic void of vol-
ume avy in the liquid under the effective (net) pressure
pett = p + A(p,T)p? in the liquid and therefore P,, =
exp(—W /kgT) is the probability of creating such a void in
the liquid into which a particle is displaced, and as a result
diffusion occurs. Consequently, the self-diffusion coeffi-
cient D of the liquid is proportional to P,,, and the propor-
tionality constant is the gas phase diffusion coefficient Dy
to which D tends in the limit of vanishing density, where
the ideal gas equation of state holds. This interpretation
suggests that W may be regarded as the activation energy
for diffusion, and one may thus regard Eq. (5) as the ex-
pression for self-diffusion coefficient in the Arrhenius the-
ory of activation [10] for diffusion in which the activation
energy for diffusion is defined by work W to create volume
avg. This argument shows that with the argument leading
to Eq. (5) from Eq. (1) the CT theory can be turned into
an Arrhenius theory of activation for diffusion.

In this Letter we show that within the spirit of the Ar-
rhenius activation theory the formula for D in Eq. (5) can
be readily generalized to liquid mixtures. In the case of a
binary simple liquid mixture, we show that the formula for
diffusion coefficient

Diy = DY), exp{—vi,[p + A(p. T)p?1/ksT}, (7)

where D{, is the Chapman-Enskog diffusion coefficient
for the gas mixture in the normal state and v{, is the
mean characteristic volume (void) to be defined explic-
itly together with the more precise meaning of the GVDW
parameter A for the mixture, gives an excellent tempera-
ture and density (or composition) dependence for diffusion
coefficients, when compared with the experimental data.
This formula in fact can be derived from a molecular the-
ory consideration, the details of which will be given else-
where because of the space limitation. The main aim of
this Letter is to communicate the capability of this simple
formula for calculating diffusion coefficients of liquids by
using statistical mechanics methods only.

The characteristic free volume v, in the case of a binary
mixture is given by

Vi, = alv?Xl + azngz, ®)

where «; (i = 1,2) are the same adjustable parameters ap-
pearing in the CT theory [6] for single-component liquids
[i.e., Eq. (1)] and therefore no longer free, v,-0 = 770'?/6
is the molecular volume of species i, and X; = p;/p with
p = p1 + p2, the mole fraction of i, with p; denoting
the number density of species i. Therefore it is asserted
that vy, given in Eq. (8) is a mean value of volumes pro-
portional to the molecular volumes of the species of the
mixture.

To justify the definition of v, given earlier, we now
turn to the GVDW equation of state for a binary mixture
contained in volume V and at temperature 7. The virial
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equation of state for the mixture is given by

2
B_p =1 - WB Z plp]f dr r3u
p i,j=1

Xe P “”(’)y,,,(r), ©)

where B = 1/kgT. Here u;;(r) is the potential en-
ergy between pair ij and uﬁ, = du;j/dr. The cavity
function y;;(r) is defined as usual by y;j(r; p1,p2.T) =
exp[Buij(r)]gij(r; p1.p2, T), where g;;(r) is the pair
correlation function.

If the potential energy u;;(r) has a zero at r = o;;,
where o;; is finite, then the integral in Eq. (9) can be split
into two parts, one involving the positive repulsive branch
and the other involving the negative part of the potential
energy. Thus with the definitions of the integrals

Ay =2 [ ar Pulyrresl=Buy () vy(r), - (10)

Tij

By = = 2ZB [ a2l ) expl - By ).

(1)
and the abbreviations
2
A= Aijlp. TXiX;, (12)
ij=1
2
2.ij=1Bij(p, T)XiX; a3)

L+ p 3t Bi(p. TIXiX;
the virial equation of state (9) can be rearranged to the
GVDW equation of state given in Eq. (3). The rearrange-
ment involved is exact. Note that in the case of a single-
component liquid the sums over indices i and j are absent.
Since B;; and thus B are positive and associated with the
repulsive core of the molecules, the Bp term in the GVDW
equation of state (3) represents the fraction of the excluded
volume and it therefore is natural to define the free volume
vy by the formula given in Eq. (4). Equations (11) and
(13) give the statistical mechanical representation for the
free volume of a binary mixture. On use of v, so defined
as in Eq. (4), the diffusion coefficient in Eq. (7) may be
written in a form reminiscent of the CT theory D given in
Eq. (2),

D1y, = DYy exp{—vi,/vy}. (14)

Therefore, to calculate the density and temperature de-
pendence of D, there remain the tasks of calculating
DY, and the cavity functions y;;(r). For the simplicity
of the formula, we propose to use for DY, the CE dlffu—
sion coefficient for a binary hard sphere mixture: D}, =
(3/8pa’12)\/kBT(m1 + m,)/2mm,, where m; and m, are
masses. A nonhard sphere result can be used for D(fz at the
cost of a more complicated formula. We believe that in the
case of liquids the hard sphere formula is more appropriate
and also sufficient.
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The pair correlation functions can be calculated by
means of a suitable integral equation for the pair cor-
relation functions, such as the Percus-Yevick integral
equations, or the Monte Carlo simulation method with a
suitable interaction potential model. In this Letter, we have
used a Monte Carlo simulation method with a square well
potential model for u;;: u;j(r) = o for r < oy;; —¢;; for
oij <r < Ajy; 0for r > A;;. The potential parameters
are oar = 0316 nm, ep, = 69.4kp, Ap; = 1.850 4, for
argon; ok, = 0.336 nm, ex, = 98.3kg, Ag; = 1.850k:
for krypton; and on, = 0.329 nm, en, = 53.7kp, AN, =
1.870n, for nitrogen, considered in this work. The poten-
tial parameters for cross potentials (e.g., ua,k;) are calcu-
lated by using the combining rules: o, = (o + 03)/2,
g2 = /€182, and A;p = (A + A3)/2, for the size, well
depth, and range parameter, respectively.

In Fig. 1, Dy, is plotted against Xa, for liquid argon-
krypton mixtures at 7 = 121 K and reduced density p* =
0.62. Here p* = p(rf’z. The theoretical values are calcu-
lated by using the pair correlation functions obtained by
means of a Monte Carlo method with the potential parame-
ters specified earlier. The line, drawn to guide the eyes, is
a least squares fit to the theoretical values of the present
theory, represented by open circles. Other symbols are the
molecular dynamics (MD) simulation results by Zhou and
Miller [11] and by Heyes [12]. The MD results of Zhou
and Miller and Heyes differ probably owing to the differ-
ence in simulation times. The maximum simulation times
of Zhou and Miller are in the range of t,,x = 20 ~ 80 ps,
whereas that of Heyes is f,,x = 2.5 ps. The present theo-
retical results are found to be in good agreement with the
MD results by Zhou and Miller, whereas the agreement

0 0.2 0.4 0.6 0.8 1
X
Ar

FIG. 1. The composition dependence of Dk, of the liquid
Ar-Kr mixtures at 7 = 121 K and p* = 0.62. The open circles
(O) indicate the theoretical values and the solid curve is drawn
to guide the eyes. The crosses (+) are the MD results from
Ref. [12], and the other symbols (A, [, V) are for the MD re-
sults from Ref. [11].
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with Heyes’ results is only qualitative. We could not find
experimental data on simple liquid mixtures to use for
comparison.

The tracer diffusion coefficient is obtained from the ex-
pression for Dj, given in Eq. (14) in the limit of either
X, — 0 or X, — 0. For example, in the limit of X, — 0
the tracer diffusion coefficient of species 2 is given by

D;(2) = DY, exp(—a v} /vy). (15)

This is the diffusion coefficient of a trace amount of
species 2 in the solvent of species 1. It should be
emphasized that it is not the self-diffusion coefficient
of species 2. In Fig. 2a D,(Ar) for argon in liquid N;
is plotted against 7 and p. The pressure is fixed at
p = 0.92 atm and the nitrogen density ranges from 0.806
to 0.865 g/cm®. We have used ay, = 1.1 determined
from the data of Ref. [16]. The solid curve is drawn to
guide the eyes through the theoretical values for D,(Ar),
represented by open circles. The other symbols are the
experimental data [13]. The upper scale of the figure
indicates the density dependence of D,(Ar). In Fig. 2b
D,(Kr) for krypton in liquid argon is examined in the tem-
perature range 84 K = 7' = 100 K and the density range
1.31 g/cm® = par = 1.41 g/cm® along the coexisting
line of liquid argon. The solid curve, which is a least
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FIG. 2. (a) D;(Ar) vs T (or p) for Ar in liquid N, in the tem-

perature (density) range of 64 K = T = 78 K (0.865 g/cm’® =
N, = 0.806 g/cm?) and p = 0.9 atm. The open circles (O)
indicate the theoretical values for D,(Ar) and the solid curve
is drawn to guide the eyes. The filled circles (@) are the ex-
perimental data [13]. The p dependence is indicated in the
upper scale of the figure. (b) D,(Kr) vs p (or T) for Kr in lig-
uid Ar in the temperature (density) range 84 K = T = 100 K
(1.131 g/ecm® = p,, = 1.141 g/cm®) along the coexisting line
of liquid argon. The open circles (O) are the theoretical values
and the solid line is their least squares fit. The filled circles (@)
are the experimental data from Ref. [14], and the cross (X) from
Ref. [15].
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squares fit to the theoretical values, is also drawn to guide
the eyes. The experimental values are from Refs. [14,15].
The upper scale of the figure indicates the T dependence
of D,(Kr). The values for as,, ak;, and ay, used for
the tracer diffusion coefficients were ap, = ag, = 1
and ay, = 1.1, which were taken from the values used
for the self-diffusion coefficients [7,16]. Therefore, they
are not free parameters chosen to fit the data for these
two figures. Comparison with experiment made in the
two figures indicates that the present theory works well
for highly packed liquids at low temperature. To give an
idea about the proximity of the density and temperature
range to the freezing point we quote the triple points of
N, and Ar: T, = 63.15 K, p, = 0.868 g/cm? for N, and
T, = 83.81 K, p, = 1.417 g/cm? for Ar, both of which
are rather close to the range of density and temperature
examined here.

Since experimental data on diffusion coefficients of
simple liquid mixtures are scarce, the comparison of
theory and experiment made to test the theoretical formula
presented in this work is limited, but where comparison
is made the agreement between theory and experiment or
simulations is found to be excellent. Therefore, with the
formula presented earlier it is now possible to calculate
diffusion coefficients of simple liquid mixtures by means
of statistical mechanics methods alone. This has been
made possible by combining the ideas of the free volume
theory, the GVDW equation of state which provides the
statistical mechanical representation of free volume in
an exact manner, and the use of the CE formula for
D(l)z. The diffusion coefficient presented also reduces to
the self-diffusion coefficient reported previously, if the
single-component limit is taken in the diffusion coefficient
of the mixture. The diffusion coefficient presented and
the self-diffusion coefficient derivable from the former
or presented in Ref. [7] can also be used to perform
completely statistical mechanical calculations of shear
viscosity, bulk viscosity, and thermal conductivity of
liquids by means of the theories described in Ref. [1],
where they were used as the empirical inputs for lack
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of statistical mechanical theories for them. We believe
that they can be also applied to the study of supercooled
liquids [17] and liquid metals [18]. In such applications
lies the practical significance of the Arrhenius activation
theory formula (7) for the diffusion coefficient presented.
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