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Chiral Polymer Hexatics: A New Twist on DNA
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Theories of the “N 1 6” hexagonally ordered phase of DNA are generally based on treatments of
hexatic order in smectic systems. Thus N 1 6 phases should be analogous to superconductors and
should expel twist of the nematic director, in an analogy of the Meissner effect. However, in N 1 6
systems there is no smectic order, hence a radically different mathematical description is required. Here
I present the appropriate theory and show that, as N 1 6 phases are not analogous to superconductors,
they can exhibit twist in any direction, without forming any topological defects.
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Many liquid crystals and quasicrystals exhibit sponta-
neous orientational symmetry breaking, despite having no
long-range positional order [1]. A wide range of different
symmetries have been studied, varying from common sys-
tems, such as uniaxial nematics, to exotic phases with icosa-
hedral, octahedral, or tetrahedral symmetry [2,3]. Recently,
interest has focused on newly-discovered hexagonal sys-
tems formed from DNA molecules [4–8]. These “chiral
polymer hexatics” exhibit both nematic and hexagonal
bond-orientational order, the hexagonal part of which is
similar to the conventional hexatic systems that occur
in some materials between the smectic-A and crystalline
phases [9]. Unsurprisingly therefore, theoretical models
of these new “N 1 6” phases draw heavily on our under-
standing of smectic hexatics. Such models can make use
of a powerful analogy to superconductors, which break the
axial U(1) gauge symmetry of electromagnetism, because
hexatics break the axial D` symmetry of the smectic state.
Consequently, the most striking behaviors expected of
the N 1 6 phase are that it should expel the spontaneous
twist of the chiral nematic state, just as the Meissner effect
expels curl of the vector potential in superconductors,
and that “Type-II” systems should exhibit a defect ridden
“Abrikosov” or TGB (twist-grain boundary) phase be-
tween the cholesteric and N 1 6 states [5]. The purpose
of this Letter is to demonstrate that this is not the case;
while the superconducting analogy provides a sound
model for smectic hexatics, theories of the N 1 6 phase
require a radically different mathematical foundation. In
particular, while the differential geometry of supercon-
ducting systems forces the exclusion of magnetic field,
the corresponding geometry of N 1 6 states readily
accommodates nematic twist without forming topological
defects, and in chiral systems, such as those formed from
DNA molecules, the spontaneously twisted state is often
the preferred energy minimum.

The superconducting analogy is successful in describing
smectic hexatics because the preexisting flat smectic lay-
ers provide a uniaxial ground state about which to perform
a Ginzburg-Landau type expansion of the hexatic energy.
Crucially, the smectic order itself excludes the twist and
bend distortions of the nematic state. However, when hex-
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atic order forms in the N 1 6 state, there is no positional
order present to stop it either twisting or bending. Indeed,
the lack of preexisting positional order means that the sym-
metry group broken by this hexagonal order is not the axial
group D`, but the full rotation group O(3). In this respect,
the N 1 6 phase is, as the authors of Ref. [5] actually
comment, “not terribly different from a biaxial-nematic
phase.” Theories of uniaxial-biaxial phase transitions gen-
erally need to use a tensor order parameter [10], because
it is not possible to describe the biaxial order in terms of a
single orientational variable (e.g., f, as in jcjei2f, where
f is the azimuthal angle with respect to the uniaxial axis)
since the uniaxial axis changes its orientation as a func-
tion of position. Consequently, unless the uniaxial order
can be assumed to be oriented in the same direction ev-
erywhere, the biaxial order can only be described by using
both polar (u) and azimuthal (f) variables, and hence in
terms of the basis functions of the group O(3). Further-
more, whereas biaxial nematics can be, and are, described
by the same irreducible second-rank Cartesian tensor (Q)
used to describe the uniaxial phase, the hexagonal orien-
tational order requires a sixth-rank [2,11] Cartesian tensor
(P) to describe its properties fully. Thus, as the order pa-
rameters belong to entirely separate irreducible represen-
tations (irreps), one cannot even assume that the symmetry
axis of the nematic order will remain parallel to the sixfold
axis of the bond order. These degrees of freedom exist be-
cause the two types of order depend on physically distinct
types of correlations: the nematic order on the orientation
of the molecules with respect to each other; the hexagonal
bond order on correlations of the centers of mass of the
molecules with respect to each other (see Fig. 1). Conse-
quently, it is essential to use two separate Cartesian-ten-
sor order parameters to describe N 1 6 ordering, for both
physical and mathematical reasons.

It is easy to visualize twist in a biaxial nematic. How-
ever, while visualizing twist of hexatic order along the
sixfold axis is straightforward [6], it is much harder to visu-
alize conventional, and defect-free, nematic twist within a
hexagonally ordered state. To achieve such a visualiza-
tion, we must first determine the structure of the relevant
tensor order parameter (P) and then show that for chiral
© 2002 The American Physical Society 065502-1
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FIG. 1. Hexatic systems consist of hexagonally coordinated
clusters of molecules. Correlations of the positions of the centers
of mass of the molecules (the black dots) decay exponentially,
but the orientation of the clusters possess true long-range order.
Four unit vectors are used here to describe the geometry of the
system: n (directed out of the paper) points along the sixfold
symmetry axis; t, u and v point along the directions of maxi-
mum bond density.

phases, the Ginzburg-Landau free-energy density favors
spontaneous nematic twist. Fundamental group-theoretical
analysis of the little groups of the irreps of O(3) [2,11]
reveals that the lowest order irrep to exhibit the required
D6 symmetry is the thirteen-dimensional irrep (J � 6). In
this case, the irrep can be written explicitly as the sum of
two tesseral harmonic functions [11], such that the order-
parameter P is isomorphic to uZ6

0 1 hZ6
61. The tesserals

are defined as normal:

Z6
0 �

1
32

q
13
p �231 cos6u 2 315 cos4u 1 105 cos2u 2 5� ,

(1)

Z6
61 �

1
64

q
6006

p �cos6f� �sin6u� , (2)

where u and f are the polar and azimuthal angles, and the
scalars u and h determine, respectively, the amplitudes of
the uniaxial and hexagonal parts of the irrep. By identify-
ing three orthonormal vectors, n (the uniaxial director),
m, and k, with the angles u and f, in the usual way (i.e.,
n � cosu, m � sinu cosf, k � sinu sinf), it is possible
to map these tesseral harmonics into their irreducible
Cartesian tensor counterparts:

Z6
0 !

1
32

q
13
p �231ninjnpnqnrns

2 21�ninjnpnqdrs 1 14 permutations�
1

7
3 �ninjdpqdrs 1 44 permutations�

2
1
3 �dijdpqdrs 1 14 permutations�� ,

(3)

Z6
61 !

1
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q
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p �mimjmpmqmrms 2 kikjkpkqkrks

2 �mimjmpmqkrks 1 14 permutations�
1 �mimjkpkqkrks 1 14 permutations�� ,

(4)

where dij is the Kronecker delta tensor, and where the
“other permutations” include all permutations of the in-
dices, such that the resulting object is symmetric with re-
spect to the interchange of any index pair, as required for
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an irreducible tensor [12]. Using this sixth-rank tensor, it
is straightforward to show that, as for the second-rank ne-
matic order-parameter [9], there is only a single chiral term
in the lowest (second) order Landau-de Gennes expansion:
Pimpqrs´ijk=jPkmpqrs, where ´ijk is the alternating tensor.
It is a lengthy, though essentially trivial, exercise to con-
tract these tensors together, assuming that the amplitudes
u and h are constant, to produce the corresponding orienta-
tional elastic-energy density in terms of the standard twist
invariants:

Pimpqrs´ijk=jPkmpqrs � 2
3003
128p � 559

198 u2 2 h2� �n ? = 3 n�

2
273273
2048p h2��m ? = 3 m�

1 �k ? = 3 k� 2 �n ? = 3 n�� .
(5)

The orientational elasticity of hexagonal systems has al-
ready been studied [13] by combinatorial methods. Al-
though Ref. [13] does not use the convenient orthonormal
basis set employed here (preferring instead a set of complex
vectors), transformation from one notation to the other is
not difficult. There are eight independent quadratic terms
and two independent chiral terms in the energy according
to Ref. [13]. The two chiral terms can be identified as
those shown in Eq. (5), while the quadratic energy contains
two corresponding quadratic twist terms: K22�n ? = 3 n�2

and K66��m ? = 3 m� 1 �k ? = 3 k� 2 �n ? = 3 n��2,
where K22 is the ordinary nematic twist elastic constant
and K66 is the elastic constant for twist of the hexagonal
order along the n direction. It follows from (5) that the
free energy will be minimized by ordinary nematic twist
when the following inequality is satisfied:

16
91K22

j
559
198 u2 2 h2j .

h2

K66
, (6)

otherwise, the system will prefer to twist along the n
direction. At the nematic-(N 1 6) phase transition the
elastic constant K66 must vanish, and in this limit one may
expect it to be proportional to h2, so that the h dependence
of the right-hand side of (6) vanishes. Therefore, close to
the phase transition, whether the inequality is satisfied will
depend on the values of the other parameters. However,
the system is still far more likely to exhibit nematic twist,
as one must also consider the chiral term derived from the
second-rank order-parameter: Qil´ijk=jQkl � 2s2�N ?

= 3 N� (where N is the nematic director). This matters as
the high symmetry axes of Q and P (N and n, respectively)
are coupled together by terms in the homogeneous Landau
expansion such as QijQklQmnPijklmn ~ s3uP6�N ? n�
(where P6 denotes the sixth Legendre polynomial). Con-
sequently, any deformation of one order-parameter field
will tend to induce the same deformation in the other.

This demonstrates that spontaneous nematic twist does
correspond to the elastic-energy minimum in some circum-
stances. However, it does not make clear the fact that a
twisted hexagonal state may exist without a proliferation
of defects. In order to describe such a state, it is helpful
065502-2
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to introduce an analog of the Frank-Oseen theory of uni-
axial nematics, instead of the Cartesian tensor treatment
used above. Thus, we may describe the local orientational
order, below the nematic-(N 1 6) phase transition, with a
set of unit vector fields (see Fig. 1): n�r�, which points
along the sixfold symmetry axis, and which will be con-
tained in the plane perpendicular to the twist axis; t�r�,
which points along one of the six twofold axes of the D6
state, and along the twist axis; u�r� and v�r�, which point
along two of the remaining twofold axes such that they are
both at 60± to t�r� and at 120± to each other. This descrip-
tion does contain some redundancy: only three noncopla-
nar vectors are required to uniquely specify the orientation
of any object in three-dimensional space. Descriptions that
use an orthonormal triad have some advantages, but the set
(n, t, u, v) provides a more intuitive description of the
N 1 6 phase. If the twist axis is assumed to be along the
z direction of a three-dimensional space, then the spatial
distribution of the first two vectors will be:

t�r� � ẑ , (7)

n�r� � �cos� z
b ��x̂ 1 �sin� z

b ��ŷ , (8)

where the pitch is 2pb. The tools needed to discover the
distribution of the other two vectors are well established,
and belong to the discipline of differential geometry. Since
we assume that these vector fields fill the whole of space,
without any topological defects, we may immediately use
the equivalence relation between such a smooth set of (tan-
gent) vectors and their corresponding integral curves [14].
The integral curves of t�r� are all straight lines along the z
direction, while the integral curves of n�r� are straight lines
that lie in the x-y plane. Evidently, the integral curves of
u�r� and v�r� must be “lines of constant slope” [i.e., they
must always be at a constant angle (a � 60±) to the twist
axis]. Therefore, they must be left and right handed 60±

circular helices. The general equation of such lines is well
known [14]:

R � a�cosj�x̂ 1 a�sinj�ŷ 1 btẑ , (9)

where R indicates position; a, b fi 0, j [ �; j �2` ,

j , `� parametrizes the curve; and cosa � b�a2 1

b2�21�2. From Eq. (9) it is a simple matter [14] to find
the corresponding tangent vectors:

u, v�r� � �a2 1 b2�21�2� 7 a�sin� z
b ��x̂

6 a�cos� z
b ��ŷ 1 bẑ� . (10)

It is trivial to verify that these distributions obey the neces-
sary symmetry constraints: n ? t � n ? u � n ? v � 0,
t ? u � t ? v � cosa, and u ? v � cos 2a, at all points
in space. Since this set of vectors is smooth (without topo-
logical defects) we may conclude that there is absolutely
no geometric prohibition of nematic twist in the N 1 6
phase. To aid visualization, several members of the set of
integral curves relevant to the description of twisted hexag-
onal order are shown in Fig. 2. Furthermore, since the
065502-3
n

t
u v

FIG. 2. Representative integral curves from the complete set
that describes twisted hexagonal order. The curves are plotted
as “fat lines” to aid visualization of the structure. The integral
curves of n, the sixfold axis, are drawn in solid black, the other
curves show three of the twofold axes, the straight one of which
corresponds to t (which is also the twist axis), while the u and
v curves form pairs of counter-rotating 60± circular helices. The
orientation of n, and the directions of maximum bond density
(t, u, and v), are indicated, at various positions along the twist
axis, to the right of the figure.

above reasoning holds for vectors at any angle a to the
twist axis, it is possible to conclude that there is no prohi-
bition of twist for orientationally ordered systems of any
symmetry; for example, a twisted icosahedral quasicrys-
tal can be described by a set of six integral curves through
each point in space, one along each of the fivefold symme-
try axes of the icosahedral order (as illustrated in Fig. 3).

While it seems clear that the foundational theory of the
N 1 6 phase needs to be formulated in terms of O(3) sym-
metry breaking, rather than by analogy to superconductors,

FIG. 3. As for Fig. 2, but for a twisted icosahedral system.
Here, all of the integral curves, including the twist axis, cor-
respond to the fivefold symmetry axes of icosahedral order, the
orientation of which is indicated at one point by the icosahedron
shown.
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it is also clear that one situation exists where the conven-
tional theory is acceptable. If the nematic director (N) is
spatially uniform, and if fluctuations of the sixfold axis of
the hexatic order away from the N direction are neglected,
then the hexatic symmetry breaking does occur from an
axial state. Kamien and Levine [5] assume that such a state
is forced into existence by boundary conditions. They then
succeed in explaining the puzzling observation [4] that a
chiral N 1 6 phase of DNA molecules exhibits a sixfold
x-ray diffraction pattern, when naive arguments suggest
that the pattern should be smeared out by a precession of
the hexagonal order along the nematic axis. The present
theory will always agree with such “uniaxial-ground-state”
calculations, but stark disagreement occurs when devia-
tions away from uniform N states are considered. For ex-
ample, experiments [4] show that when a system of DNA
molecules is hydrated up, out of the N 1 6 phase, deep
into the cholesteric phase, and then dehydrated back down
into the N 1 6 phase again, the sixfold x-ray diffraction
pattern fails to return. In this situation, the conventional
theory suggests that the diffraction pattern should return,
because the reappearance of hexatic order is assumed to un-
wind the cholesteric helix, thus returning the system to its
original state. However, the empirical situation is readily
explained given the present work: once the ordered phase
“melts,” upon hydration, the boundary conditions disap-
pear, thereby allowing a conventionally twisted cholesteric
phase to form. Since this twist is actually compatible with
defect-free hexatic order, it will remain upon reentry into
the N 1 6 phase, so the liquid crystals will possess six-
fold order, but it will be oriented in different directions
at different points in the sample. Consequently, an x-ray
diffraction experiment would detect only a smeared out av-
erage, as reported in Ref. [4].

Lorman, Podgornik, and Žekš also assume a uniaxial-
ground-state as a starting point for their treatment of N 1

6 phases that develop spontaneous polar order [8]. Conse-
quently, their basic analysis seems fundamentally sound.
However, they do not consider elastic deformations away
from the ground state. Such an extension of the theory
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will be necessary if it is to describe N 1 6 phases in
general, and not just special cases where boundary con-
ditions prevent any distortions of N away from uniformity.
This presents an interesting challenge because, as the ar-
guments detailed above show, N 1 6 phases actually have
far greater freedom, in the types of defect-free elastic dis-
tortions that they can support, than the superconducting
analogy would allow.

It is a pleasure to acknowledge many interesting discus-
sions with M. A. Osipov and J. R. Sambles.
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87, 218 101 (2001).
[9] P.-G. de Gennes and J. Prost, The Physics of Liquid Crys-

tals (Clarendon Press, Oxford, 1993), 2nd ed.
[10] Z. H. Wang and P. H. Keyes, Phys. Rev. E 54, 5249

(1996).
[11] M. J. Linehan and G. E. Stedman, J. Phys. A 34, 6663

(2001).
[12] U. Fano and G. Racah, Irreducible Tensorial Sets (Aca-

demic Press, New York, 1959).
[13] S. Stallinga and G. Vertogen, Phys. Rev. E 49, 1483

(1994).
[14] M. M. Lipschutz, Schaums Outline of Theory and Prob-

lems of Differential Geometry (McGraw-Hill, New York,
1969).
065502-4


