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Carbon nanotubes yield to mechanical force by a primary dislocation dipole whose formation energy
describes the thermodynamic stability of the tubule. However, the real-time strength is determined by
the rate of defect formation, defined in turn by the activation barrier for the bond flip. First extensive
computations of the kinetic barriers for a variety of strain-lattice orientations lead to predictions of
the yield strength. Its value depends on nanotube chiral symmetry, in a way very different from the
thermodynamic assessment.
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Physics of strength and fracture remains a challenging
area for many reasons [1]. It is an inherently multiscale
phenomenon [2] that may begin from a few atoms involved
in nucleation and ultimately evolves into macroscopic fail-
ure, often accompanied by complex patterns of cracks [3].
It can also begin and/or continue in an intermediate, meso-
scopic scale of dislocations, preexisting in a macroscopic
piece. The temporal aspects of this nonequilibrium pro-
cess are crucial: How long a crystal can sustain a load
before it gives is often more important than the formal ther-
modynamic stability. Here we address the kinetics of the
very first event of yield, the formation of a primary defect
that unlocks the perfect crystal for further relaxation. We
chose a very small and simple while potentially important
sample, an ultimate whisker, the carbon nanotube (CNT).
Indeed, the strength and stiffness of CNT are among its ap-
pealing physical properties [4] especially in view of recent
reports of a CNT-based actuator, resonator and microbal-
ance, and a fiber [5]. Though tiny, CNT is likely to be
the strongest material unit, and theory of its strength is
essential.

Below we begin with the established atomic mechanism
of relaxation in the graphene wall of CNT, nucleation of
a dislocation dipole. The formation energy �Ef� of this
defect is recalled, with an emphasis on symmetry depen-
dence. In what follows, we underline the kinetic aspect
of yield, and pose a question: How long does it actually
take for the first defect to emerge, or how large a strain
can CNT sustain before it yields and fails within labora-
tory time? To answer this, the activation barriers �E�� and
transition states (TS) must be considered in some detail.
These values and geometries are computed, with the re-
alistic multibody interatomic potential for a broad variety
of applied stress magnitudes and orientations (to represent
different chiralities of CNT). Based on these data, we
show how kinetic treatment leads to the first quantitative
evaluation of CNT strength limits. It is very different from
thermodynamic predictions based on Ef , both in the mag-
nitude of critical strain and in its strong dependence on
chirality.
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The way a monatomic sheet is rolled into a CNT can
be specified by the diameter d and chiral angle x between
the cylinder circumference and the basis vector a1 in the
lattice (Fig. 1a). All nonequivalent CNT chiral symmetries
fall within the wedge 0 # x # p�6. Notably, studies of
elastic properties [6] have been greatly simplified by the
fact that two-dimensional graphite crystals are elastically
isotropic, so that moduli of CNT depend negligibly on
chirality.

The situation changes qualitatively for large deforma-
tions causing irreversible atomic shifts. These nonlinear

FIG. 1. (a) Atomic configurations for a 5-7-7-5 defect (top)
resulting from the left (middle) or right (bottom) Stone-Wales
rotation in graphene sheet. Corresponding transition states are
aligned differently with respect to the tensile strain ´, directed
at the angle x 1 p�2 from the basis vector a1 (in a nanotube
of chirality x; here x � 19±). (b) Modes S, S21, S11, and
S1 all have a similar bond-rotation angle, but differ in the atom
excursions out of plane (mode S not shown).
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processes depend on strain direction with respect to the
intrinsic hexagonal pattern and must vary with CNT
chirality. Recent studies have identified the primary
defect, responsible for CNT strength [7–9]. It is a 5�7
(pentagon/heptagon) dislocation dipole 5�7�7�5, pro-
duced by Stone-Wales (SW) p�2 rotation flip of a single
C-C bond in a honeycomb lattice.

The SW defect has D2h symmetry and is subject to the
two fields in CNT: the external strain ´ along the CNT,
and the one due to cylindrical curvature, a�d, oriented at
angles x 1 p�2 and x with respect to a1, respectively.
Based on symmetry analysis, the dependence of Ef

on CNT chirality has been described [7,9,10]. Recent
massive computations [11] have led to the approximation
(omitting the d-dependent terms for brevity), Ef �´, x� �
2.72 2 3.9´ 2 32´ sin�2x 1 30±� 1 O�1�d� eV. The
significance of Ef�´, x� is its connection with the thermo-
dynamic stability of strained CNT, which must therefore
depend on chirality. One can define critical strain by the
condition Ef � 0, when the SW defects (the nuclei of
the failure) become favorable [8,10]. However, for this
defect to emerge in real laboratory time (seconds or hours)
the probability rate should be sufficient; that is the E�

must be reduced, a kinetic requirement more severe than
the thermodynamic Ef # 0. Furthermore, the TS has
lower symmetry than the final SW defect and therefore
the chirality dependence of the strength is qualitatively
different from the assessments based on Ef .

Computations of E� must be guided by preliminary sam-
pling of configurational space. SW flip has little effect on
the surrounding lattice, so the transition should be sought
between the ideal and SW-transformed geometries, near
the p�4 rotation (Fig. 1a). Note that the left and right
rotations lead to the same SW defect, but occur through
different orientations with respect to the tension. In addi-
tion to in-plane rotation, the bond atoms can also move out
of plane. Accordingly, a few basic modes must be consid-
ered. In the mode S, both flipping atoms stay in the plane.
If they depart the plane in opposite directions (down, 2,
and up, 1, Fig. 1b) this is mode S21. In the mode S11,
both atoms digress from the plane in the same direction.
Finally, in the mode S1, only one atom buckles out.

Structures of these modes and the corresponding E� are
computed in detail for the case of plane lattice only, in
order to simplify the discussion. This is sufficient for the
analysis of the role of chirality in CNT of finite diame-
ters, while the precise E� change little with curvature.
(Similarly, analysis shows small Ef dependence on diame-
ter [11,12].) We point out here that the degeneracy of
the modes S11 (and S22) and S1 (and S2) is lifted in
a curved CNT, as the directions inward �2� and outward
�1� become nonequivalent [13].

To model different chiralities, the strain is applied at the
angles x 1 p�2. (The Poisson effect is also taken into
account; note that for our supercell size 6 nm relaxation
at constant stress yields energies within 0.02 eV from the
constant strain results.) Following crude sampling by the
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initial bond in-plane rotation angle and out-of-plane ex-
cursion, a refined saddle point search is performed using
a modified conjugate gradient method [14]. The modifi-
cation formally defines quasienergy as a sum of squared
values of the forces applied to all atoms. Then a standard
minimization algorithm is applied to this quasienergy and
searches for all points where the energy gradient is zero.
Minima and maxima of the true energy are excluded af-
terwards, leaving the saddle points of interest. The gradi-
ents of the quasienergy are calculated analytically for the
Tersoff-Brenner potential [15], to ensure a fast search,
essential for the investigation of larger systems with a
broader range of parameters.

E� values are computed for 61 chiral angles x [
�0; p�3�, and strain of 51 magnitudes ´ [ �0; 0.05�, for
each of the 24 branches: 3 (bond choices) times 2 (left
and right rotation directions) times 4 (modes S, S21,
S11, or S1). The computed configurations are close to
those described above, with the rotation angle near p�4.
However, for a given strain ´, comparison and identi-
fication of the lowest-energy channel is simpler in the
“extended zone scheme” (analogous to the conventional
representation of the band structure in crystals), where
x [ �0; 2p� (Fig. 2). Physically, this corresponds to
rotating only one trial bond in a single (right) direction,
via all possible modes, with the tension direction varying
around the full 2p circle. Obviously at ´ � 0 there is no
x dependence. The results for ´ � 0.05 are shown as a
four-branch function with each branch corresponding to
a particular mode.

The E� dependence on the tension direction x is evi-
dent and varies between the modes. For convenience,
we choose the trial bond so that most interesting low-
level transitions fall into x [ �0; p�6�, a standard chiral-
ity range. From a physical point of view, all modes, bond
types, and rotation directions provide simultaneous, paral-
lel channels for the relaxation in the lattice. The fastest of
them dominates and determines the observable yield under
tension, i.e., the lower envelope of the shown curves is

                                        

                                        

                                        

                                        

0 60 120 180 240 300 360
4.0

4.5

5.0

5.5

6.0

6.5

7.0

χ

s+ s+ +

s

s− +

s+ +
s+

s− +

s
ε = 0.05

E*, eV

FIG. 2. Activation barrier E� for the defect formation in a
nanotube as a function of chirality x , for a tensile strain ´ �
0.05 (short horizontal segments correspond to ´ � 0). Periodic
dependence is evident in this “extended zone scheme.” Different
branches are marked according to the transition state modes.
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mainly of interest. At this strain level, S21 provides
the lowest-energy path for the SW defect for all distin-
guishable chiralities x [ �0; p�6�. This is consistent with
earlier observations (Fig. 1b in Ref. [8]) and additional
molecular dynamics (MD) simulations: one atom often
swinging inward and another outward. However, high tem-
perature (near 2000 K) in MD makes it difficult to clearly
identify the geometry and the actual height of the bar-
rier. Here, the corresponding E�

21 attains its minimum at
the strain orientation x � 11±, indicating that the weakest
tube must be closer to zigzag type �x � 0�, very different
from the thermodynamic assessment based on Ef that has a
minimum at x � 30± (armchair CNT). On the other hand,
the highest barrier is observed at x � 30±, suggesting the
lowest probability of failure for armchair tubes, again in
contrast with the position x � 0 for maximum Ef . The
reduction of energy by tensile strain can be understood in
similar ways for the final �Ef� and transition �E�� states.
They both behave similar to dilatation centers in the lat-
tice (an instantaneous, fluctuating one in the case of transi-
tion) with the largest energy reduction achieved by tension
along the dilatation axis. The final SW bond is aligned
at 30± 1 90± � 120± from a1, and the tension in this di-
rection occurs for x � 30± (hence, minimum of Ef ). In
transition, the bond is oriented at 30± 1 45± � 75± from
a1, so the minimum for E� could be expected for the ten-
sion applied at this angle, that is for x � 215±. At the
actual E�-minimum position x � 11±, the strain partially
reduces the transition dilatation energy, and partially pro-
motes its further rotation flip towards the final state. The
difference of dilatation directions in the final SW and the
transition is the likely cause of the shift in chiral behavior
of Ef and E�.

Computed E� depend on strain ´ almost linearly, for
all the modes and chiral angles. Figure 3a depicts the
branches of E��x� computed at higher strain ´ � 0.1,
where the minimum remains at x � 11±, while near the
maximum at x � 30± mode S11 becomes competitive.
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FIG. 3. In (a), the lowest activation energy (thick line) dependence on chirality is shifted with respect to the formation energy
(Ef , bottom line), which at the strain ´ � 0.1 is mostly negative. (b) Yield strain as a function of chirality, computed for different
failure-expectation times, 1 ms, 1 s, 1 h, and 1 y as marked.
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The added plot of Ef �x� illustrates again the qualitative
difference between the kinetics of yield �E�� and thermo-
dynamic stability �Ef� in their dependencies on x. The
clear phase shift in correlation of the E� with respect
to Ef (Fig. 3a) demonstrates a peculiar example of the
classic Evans-Polanyi rule [16]. In its original chemical
context, it recognizes the linear relationship between acti-
vation energy and the heat of reaction. In our case, due
to the symmetry difference between the transition and the
final SW defect, there is a large x-phase shift between the
thermodynamic �Ef� and the actual rate determining �E��
quantities.

The distinct periodicity of E��x� and Ef �x�, and their
approximately linear dependence on ´, call for analytical
approximations (in eV):

E�
21�´, x� � 5.9 2 7.4´ 2 22´ sin�2x 1 68±� (1a)

E�
11�´, x� � 6.2 2 11´ 2 19´ sin�2x 1 25±� (1b)

We omit equations for the modes S and S1. We should
mention that similarly large E� have been discussed pre-
viously [10,13]. Moreover, the provided above values of
E�

21�´, x � p�6� agree very well with this particular sub-
set obtained differently in [8].

Now the physical consequences of these results can be
discussed. First we note that the thermodynamic require-
ment for the defect formation �Ef � 0� is met sooner, at
lower strain than is necessary for any detectable kinetic rate
of yield. For example, the data at ´ � 0.1 in Fig. 3a shows
already negative Ef for most of the chiralities, but still pro-
hibitively large E�. Therefore, at strains large enough to
sufficiently reduce the barrier, Ef is already negative, and
defect formation is irreversible. The only criteria for fail-
ure (more accurately, first nucleation of failure, the primary
SW defect) becomes kinetic: Within laboratory time Dt,
at what strain ´ does the probability P of the SW event in
a given sample become significant? Quantitatively,
065501-3
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P � nDtNB�3
X

m
exp�2E�

m�´, x��kbT� � 1 , (2)

where index m numbers the modes. The coefficient 1�3
here is due to the fact that only one-third of the bond ori-
entations is normally prone to SW flip. Let us assume
for a rough estimate, room temperature T � 300 K, the
attempt frequency n � kbT�h � 1013 s21 [16], a CNT
length L � 1 mm, and diameter d � 1.4 nm. The total
number of bonds is NB � 180Ld�nm2. Substituting these
values together with the Eqs. (1) into Eq. (2), we compute
the critical strain ´ for the chosen times of yield, from
Dt � 1 ms to Dt � 1 y, as shown in Fig. 3b. The ef-
fect of chirality on the yield strain is evident, while the
specific choices of the test time, the sample size, and the
frequency factor are mitigated by the logarithmic depen-
dencies. Overall, Fig. 3 illustrates how our theory al-
lows one to derive yield strength from interatomic forces
(Tersoff-Brenner [15] in our case). More precise input
from first principles calculations can refine the quantitative
values for the specific material. However, the proposed ap-
proach will still be valid.

In summary, we have presented the first kinetic approach
to CNT strength, predicting the yield strain range, the sig-
nificant role of chiral symmetry, and the role of tempera-
ture. We believe that the presented theory can also serve
as a framework for the treatment of failure nucleation in
other crystals. With regard to quantitative predictions, we
note that, for any particular CNT and conditions, further
refinement of E� values can be achieved by more accu-
rate tight binding or ab initio treatment of chemical bonds.
Since computing the overall landscape of E��´, x� for all
various strains, chiralities, and modes remains impractical
for ab initio methods, we employ a classical force field.
This leads to yield strain near 17% corresponding to ten-
sile strength of 150–180 GPa, assuming the CNT Young’s
modulus 1 TPa [4,17]. It compares well with reported ex-
perimental data of 4%, 5%, 16%, and 17% [18]. Here we
deliberately discuss only ideal samples, pristine graphene,
and CNT; factors such as preexisting defects, chemical en-
vironment, nonuniform load transfer, or in situ damage
by an electron beam can reduce the measured yield level.
These factors can be accounted for on a case by case ba-
sis, which obscures any general conclusions. The ideal
defect-free sample, improbable in macroscopic scale, is
more realistic as a nanoscale whisker or tubule.
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