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Transport Coefficients of the Yukawa One-Component Plasma
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We present equilibrium molecular-dynamics computations of the thermal conductivity and the two
viscosities of the Yukawa one-component plasma. The simulations were performed within periodic
boundary conditions, and Ewald sums were implemented for the potentials, the forces, and for all the
currents which enter the Kubo formulas. For large values of the screening parameter, our estimates
of the shear viscosity and the thermal conductivity are in good agreement with the predictions of the
Chapman-Enskog theory.
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Recently, many numerical studies of the Yukawa one-
component plasma (YOCP)—i.e., a system made of N
identical classical point particles of charge q and mass m
which are embedded in a uniform neutralizing background
of volume V and which interact via Yukawa pair potentials
y�r� � q2 exp�2ar��r— have been performed in view of
applications for a broad variety of systems, including dusty
plasmas, inertial confinement fusion dense plasmas, jovian
planets, brown and white dwarfs, etc. The excess free en-
ergy f as well as all the thermodynamic properties of the
YOCP depend only upon two parameters, namely, the cou-
pling parameter G � bq2�a, where b � 1�kT is the in-
verse temperature and a is the ionic radius (4pra3�3 � 1,
r � N�V number density), and the reduced screening pa-
rameter a� � aa. In the special case where a� � 0, one
recovers the well-known one-component plasma (OCP)
[1]. The other limiting case a� ! ` is that of a dilute
gas for which simple approximate schemes can safely be
used. The thermodynamic and structural properties of the
YOCP have been thoroughly studied by means of equilib-
rium molecular dynamics (EMD) simulations within peri-
odic boundary conditions (PBC) [2,3] and by Monte Carlo
simulations on the hypersphere [4]. Reliable estimates of
the free energy f�G,a�� are thus available in a wide range
of �G, a�� [2–4].

By contrast, very little is known about the dynamical
properties of the model. In view of hydrodynamical simu-
lations, precise estimates of the transport coefficients of
the YOCP are clearly wanted. Attempts to compute the
shear viscosity h by means of nonequilibrium molecular
dynamics (NEMD) simulations were discussed recently in
the literature [5]. In this Letter we present equilibrium
molecular dynamics (EMD) computations not only of h,
but also of the bulk viscosity j and the thermal conductiv-
ity l. It turns out that our results for h differ significantly
from those of Ref. [5], a puzzling point which will be dis-
cussed later.

As it is well known, the three transport coefficients h,
j, and l are given by the Kubo formulas [6–8] :
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In Eqs. (1), sab denotes the Fourier transform of one of
the Cartesian components of the pressure tensor at �k � �0,
and �Je is the �k � �0 component of the Fourier transform of
the energy current.

Our simulations were performed in a cube of side L
with PBC conditions, and we took an explicit account of
the periodicity of the system by making use of Ewald sums.
We have shown elsewhere that the PBC expression of the
Yukawa pair potential reads, up to an additional constant,
as [9]
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where the sum in the right-hand side (r.h.s.) runs over the
vectors �k of the reciprocal lattice. The parameter d is cho-
sen in such a way that the contributions to yPBC��r� in the
direct space reduce to a single term ([i.e., the second term
of the r.h.s. of Eq. (2)] and that the cutoff k0 on the vec-
tors �k is not too large. The optimal choice, which ensures a
relative precision of the order of �1026 on yPBC��r� for all
the points �r inside the simulation cell, is d 3 L � 5.6 [9].

The Ewald expressions for the pressure tensor sab and
the energy current �Je can be obtained by generalizing the
pioneer work of Bernu and Vieillefosse on the OCP [8].
The details of the derivation will be given elsewhere, and
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we just quote here, as an example, the resulting expression
for the �k � �0 Fourier transform of the pressure tensor:

sa,b � sK
a,b 1 sd

a,b 1 s
f
a,b , (3a)
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In our simulations, we choose as a unit of length the
ionic radius a and as a unit of time t �

p
3v21

p with
v2

p � 4prq2�m. The calculations were performed in the
microcanonical ensemble, and the trajectories of each of
the N particles (and all its images) were computed by a
time-symmetrical integer algorithm [10]. This algorithm
is symplectic and ensures an exact conservation of the to-
tal momentum of the system. The time increment Dt was
chosen in such a way as to ensure a good conservation
of the energy (typically Dt � 1022t leads to fluctuations
of �1027 on the average energy). In most of our simu-
lations N � 500, but smaller and larger systems were also
considered in order to study finite size effects on the trans-
port coefficients. Typically 5 3 105 time steps were gen-
erated after a careful equilibration of the system. Each
run was divided into statistically independent blocks of
�5 3 104 time steps, i.e., much larger than the corre-
lation time. The reported errors on the autocorrelation
functions and the transport coefficients were obtained by
a standard block analysis [7]; they correspond to one stan-
dard deviation. As an example of the precision which
can be obtained for sufficiently long calculations, we dis-
play in Fig. 1 the autocorrelation of the energy current at
�G � 10, a� � 0.1�. The integral of the function over the
time reaches a well-defined plateau which allows for an
accurate determination of the thermal conductivity. The
precision on l and on the other transport coefficients is
typically of the order of �1% for most of the consid-
ered cases.

5 10 15 20 25
t / τ

0

0.2

0.4

0.6

0.8

1

FIG. 1. Solid curve: The autocorrelation function of the energy
current � �Je�t� ? �Je�0�� for �G � 10, a� � 0.1�; dotted curve: cu-
mulative sum.
Since the thermodynamic states of the YOCP are char-
acterized by two parameters, a systematic determination of
the transport coefficients in the whole fluid phase requires
an enormous amount of simulations. We present here
only preliminary results for a few thermodynamic states;
extended results will be given in a forthcoming publication
[11]. Our results are summarized in Tables I, II, and III.
We choose the following units: mvpra2 for the vis-
cosities (h � mvpra2h�, j � mvpra2j�), kvpra2

for the thermal conductivity �l � kvpra2l��.
In order to check our method, we have first considered

the case a� � 0.01 and compared our results with those
of Bernu and Vieillefosse [8] and of Donkó et al. [12] for
the OCP. The former authors have performed EMD simu-
lations of the OCP and give estimates of �h, j, l� for a few
thermodynamic states, while the latter provide extensive
NEMD computations of h and l. As far as the shear
viscosity is concerned, all the results are in overall good
agreement except at low G’s. However, it must be stressed
that, in this regime, Bernu and Vieillefosse have considered
only relatively small systems of N � 128 particles; their
results for h are, hence, probably underestimated due to
finite size effects. As seen from Table I, the reduced bulk
viscosity j� is typically 3 orders of magnitude smaller
than h� which makes difficult its precise determination and
entails relatively important statistical errors. Our estimates
of j� agree well with those of Bernu et al. at large G’s
but, as for the shear viscosity, differ significantly at low
G’s. Finally, our results for the thermal conductivity at
a� � 0.01 are in good agreement with those of Bernu
et al. (except for the lowest G’s) but are systematically
higher than those obtained by Donkó et al. in their NEMD
simulations [12].

The recent NEMD simulations of Sanbonmatsu and
Murillo [5] on the YOCP have been performed only
for large values of the screening parameter (i.e., for
a� � 1, 2, 3, and 4. In this case, Ewald sums can
probably be safely ignored, at least for sufficiently
large systems. Our estimates of the shear viscosity are
compared with those of Ref. [5] in Table II for a few
thermodynamic states. The disagreement between the two
series of simulations is patent, particularly for large values
of a� where the results may differ by a factor of �4. In
order to clarify this point, we have focused on the case
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TABLE I. Transport coefficients of the YOCP in the limit a� ! 0. The numbers in brackets denote the accuracy of the last digits.

h j 3 1023 l
G YOCPa OCPb OCPc YOCPa OCPb YOCPa OCPb OCPc

1 1.16�5� 1.04�21� 4.72�36� 2.6�6� 4.24�29� 2.9�6� �2.2
2 0.527�7� �0.5 3.02�5� 1.862�16� �1.2

10 0.112�1� 0.085�17� �0.1 1.753�24� 1.8�5� 0.5586�70� 0.66�16� �0.40
100 0.1874�20� 0.18�3� �0.18 0.394�7� 0.21�6� 0.843�11� 0.88�17� �0.72

aEMD results at a� � 0.01.
bEMD results of Bernu and Vieillefosse [8] for the OCP.
cNEMD results of Donkó et al. [12] for the OCP.
of the large a�’s. In this regime, we actually deal with a
dilute gas of particles interacting via short range poten-
tials. Clearly, in this case, the transport coefficients can
be computed in the framework of the Chapman-Enskog
(CE) theory [13]. In the so-called first CE approximation,
we have j� � 0 and

hCE �
5
8

kT
V�2��2�

, (4)

where V�2��2� is a standard collision integral [13]. Note
first that j� � 0 which is compatible with the low values
of the reported data and the steady decay of j� with respect
to a� for a fixed G, as seen from Table II. Moreover, it can
be shown that the expression (4) of the CE shear viscosity
of the YOCP can be rewritten as

hCE �
a�2
p

G
I �a�G� , (5)

where I �a�G� is a triple integral that we have computed
numerically by Monte Carlo integration methods. In Fig. 2
we display the EMD and CE shear viscosities as func-
tions of a� for G � 2, 10, and 50. The agreement be-
tween our EMD results and the predictions of the CE
theory is obvious for sufficiently large a�’s. More pre-
cisely, the CE estimates seem to be accurate as soon as
the coupling parameter G exp�2a�� & 0.35. The CE the-
065002-3
ory also enables the computation of the thermal conduc-
tivity lCE � 5CyhCE�2 and we found, as in the case of
the shear viscosity, a perfect agreement between our EMD
simulations and the CE theoretical predictions in the do-
main G exp�2a�� & 0.35.

In summary, our EMD results for the transport coeffi-
cients of the YOCP are in good agreement with the avail-
able data on the OCP in the limit a� ! 0 and also in good
agreement with the predictions of the CE theory for large
values of a�, as it should be, and in severe disagreement
with the values reported in Ref. [5].

We think that the standard approach used in this work to
compute the transport coefficients — i.e., EMD simulations
plus Ewald sums— is efficient and reliable for the two
following reasons.

(i) The three transport coefficients h, j, and l can be
computed in a single run. By contrast, each transport
coefficient requires a separate NEMD simulation.

(ii) Thanks to Ewald sums, the simulations can be under-
taken for any value of a� and they require a small number
N of particles. By contrast NEMD simulations seem to re-
quire larger system sizes which precludes the use of Ewald
sums [5,12].

We have indeed checked that finite size effects on the
transport coefficients are small as long as N $ 256. For
instance, for the state �G � 10, a� � 1� , we found for
the thermal conductivity l� � 0.4138�41�, 0.5556�54�.
TABLE II. Transport coefficients of the YOCP for few thermodynamic states. For each co-
efficient; first column: present EMD results; second column: Chapmann-Enskog prediction
(jCE � 0 not reported); third column (only for h�) NEMD estimates of Ref. [5]. The numbers
in brackets denote the accuracy of the last digits.

G � 2
a h l j 3 1023

1 0.496�12� 0.439�64� 0.2340 2.42�12� 1.65�24� 0.834�48�
2 0.991�24� 0.826�48� 0.2646 2.89�17� 3.09�18� 0.756�14�
3 1.282�36� 1.367�94� 0.4760 5.36�29� 5.13�35� 0.694�12�
4 1.935�36� 2.055�152� 0.5496 7.18�23� 7.71�57� 0.447�5�

G � 10
a h l j 3 1023

1 0.112�3� 0.047�5� 0.0526 0.570�18� 0.176�18� 1.282�48�
2 0.145�3� 0.117�10� 0.0521 0.644�17� 0.438�39� 1.205�48��14�
3 0.198�3� 0.193�10� 0.0693 0.841�18� 0.726�40� 1.426�12�
4 0.306�4� 0.288�19� 0.0870 1.239�23� 1.08�7� 1.255�9�
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TABLE III. Transport coefficients of the YOCP for small values of the screening parameter a. The numbers in brackets denote
the accuracy of the last digits.

h j 3 1023 l
a G � 2 G � 10 G � 50 G � 2 G � 10 G � 50 G � 2 G � 10 G � 50

0.2 0.513�5� 0.1054�12� 0.1102�7� 2.78�5� 1.287�24� 0.534�7� 1.716�11� 0.55�1� 0.641�1�
0.4 0.464�5� 0.1033�12� 0.1069�7� 1.439�24� 1.238�24� 0.451�5� 1.96�2� 0.55�1� 0.704�1�
0.6 0.513�5� 0.1093�17� 0.1016�6� 0.967�12� 0.914�17� 0.3906�85� 1.99�2� 0.518�9� 0.560�1�
0.8 0.525�5� 0.1028�15� 0.0937�6� 0.851�5� 0.788�19� 0.372�5� 2.36�2� 0.492�12� 0.592�1�
0.5397�69�, 0.5372�56� for N � 128, 256, 500, 864, re-
spectively. Therefore systems of N � 500 are sufficiently
large to ensure a reliable estimate of the transport coef-
ficients. Some discrepancies between our results in the
case a� � 0.01 and those obtained by Bernu et al. for the
OCP with systems made of N � 128 particles probably
originate in finite size effects.

Finally, we have also considered small values of the
screening parameter a�, i.e., 0 # a� # 1. In this case
the use of Ewald sums cannot be avoided and some pre-
liminary results are displayed in Table III. Calculations
are in progress for other values of �G, a��, and many more
results will be given together with a fit of all transport co-
efficients as functions of �G, a��.
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FIG. 2. Shear viscosity of the YOCP as a function of a�

for various G’s. Solid curve: EMD results; dashed curve: CE
theory.
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