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The Müller-Israel-Stewart second-order theory of relativistic imperfect fluids based on Grad’s moment
method is used to study the expansion of hot matter produced in ultrarelativistic heavy-ion collisions.
The temperature evolution is investigated in the framework of the Bjorken boost-invariant scaling limit.
The results of these second-order theories are compared to those of first-order theories due to Eckart and
to Landau and Lifshitz and those of zeroth order (perfect fluid) due to Euler.
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High energy heavy-ion collisions offer the opportunity
to study the properties of hot and dense matter. To do
so we must follow its spacetime evolution, which is af-
fected not only by the equation of state but also by dissipa-
tive, nonequilibrium processes. Thus we need to know the
transport coefficients such as viscosity, thermal conductiv-
ity, and diffusion. We also need to know the relaxation
coefficients. Knowledge of the various time and length
scales is of central importance to help decide whether to
apply fluid dynamics or cascade or a combination of the
two. The use of fluid dynamics as one of the approaches
in modeling the dynamic evolution of nuclear collisions
has been successful in describing many of the observables
[1,2]. So far most work has focused on the ideal or per-
fect fluid and/or multifluid dynamics. In this work we ap-
ply the relativistic dissipative fluid dynamical approach. It
is known even from nonrelativistic studies [3] that dissi-
pation might affect the observables. The first theories of
relativistic dissipative fluid dynamics are due to Eckart [4]
and to Landau and Lifshitz [5]. These theories are now
known to have some undesirable features: they lead to
Navier-Stokes-Fourier laws which are parabolic in struc-
ture and therefore may propagate signals with speeds ex-
ceeding that of light. A qualitative study of relativistic
dissipative fluids for applications to relativistic heavy-ions
collisions has been done using these first-order theories [6].

Second-order theories of dissipative fluids due to Grad
[7], Müller [8], and Israel and Stewart [9] were intro-
duced to remedy some of these undesirable features. In
second-order theories the space of thermodynamic quanti-
ties is expanded to include the dissipative quantities for
the particular system under consideration. These dissi-
pative quantities are treated as thermodynamic variables
in their own right. The phenomenological formulation of
the transport equations for the first-order and second-order
theories is accomplished by combining the conservation
of energy momentum and particle number with the Gibbs
equation. One then obtains an expression for the entropy
4-current, and its divergence leads to entropy production.
Because of the enlargement of the space of variables the
expressions for the energy-momentum tensor Tmn, par-
ticle 4-current Nm, entropy 4-current Sm, and the Gibbs
equation contain extra terms. Transport equations for
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dissipative fluxes are obtained by imposing the second
law of thermodynamics, that is, the principle of nonde-
creasing entropy. The difference between the two stems
from the entropy 4-current: the standard irreversible ther-
modynamics of Eckart-Landau assumes that the entropy
4-current should include terms linear in dissipative fluxes
and hence they are referred to as first-order theories of dis-
sipative fluids. On the other hand, the extended irreversible
thermodynamics of Müller-Israel-Stewart includes terms
quadratic in dissipative fluxes and hence they are referred
to as second-order theories of dissipative fluids. The ki-
netic approach is based on Grad’s 14-moment method [7].
The resulting equations are hyperbolic and lead to causal
propagations [9,10]. For a review on generalization of the
Müller-Israel-Stewart theory to a mixture of several par-
ticle species, see [11].

The formulation of relativistic hydrodynamics can be
found in standard textbooks [5,12–15]. The energy equa-
tion governing fluid motion is given by

D´ � 2�´ 1 p 1 P�u 1 pmn �n um

2 �mqm 1 quam , (1)

where ´ is the energy density, p is the pressure, D �
um≠m is the convective time derivative, =m � Dmn≠n is
the gradient operator, u � ≠aua is the volume expansion,
um is the 4-velocity, am � Dum is the 4-acceleration, P

is the viscous pressure, pmn is the viscous stress ten-
sor, qm is the heat flow, and �mn � gmn 2 umun is the
projection tensor orthogonal to the 4-velocity and gmn �
diag�11, 21, 21, 21� is the metric tensor in Minkowski
spacetime. In the Eckart theory the dissipative contribu-
tion to the bulk pressure, the heat flux, and the shear vis-
cous tensor are given by

P � 2zu , (2)

qm � lT

µ
�mT

T
2 am

∂
, (3)

pmn � 2h ��m un�, (5)

where z , h, l are the bulk, shear, and thermal conductivity
coefficients, respectively. They are required to be positive
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by the second law of thermodynamics. T is the tempera-
ture of the system. The angular bracket notation is defined
by

A�mn� �
∑

1
2

��m
s �n

t 1 �m
t �n

s� 2
1
3

�mn �st

∏
Ast.

(5)

The above expressions for dissipative fluxes can also be
obtained in kinetic theory by employing the first Chap-
man-Enskog approximation [16]. In second-order theo-
ries we have to solve for these dissipative fluxes from
their evolution equations. One can show [17] that in the
1 1 1 Bjorken scaling hypothesis [18], the system of trans-
port equations given by [9] becomes tractable. The same
simplifications occur in �1 1 1�-dimensional Bjorken hy-
pothesis in first-order dissipative fluid calculations [6]. In
�2 1 1�- and �3 1 1�-dimensional flow these equations be-
come much more complicated. This is a subject of current
study [17].

I give here the second-order equations for �1 1 1�-
dimensional scaling flow. These equations were derived
from kinetic theory using Grad’s 14-moment approxima-
tion method [7]. We will only need the Müller-Israel-
Stewart [9] equations in the following form:

DP � 2
1

tP

P 2
1
2

1
b0

P

∑
b0u 1 TD

µ
b0

T

∂∏

2
1

b0
u , (6)

Dqm � 2
1
tq

qm 1
1
2

1
b1

qm

∑
b1u 1 TD

µ
b1

T

∂∏

1
1

b1

µ
�mT

T
2 am

∂
, (7)

Dpmn � 2
1

tp

pmn 2
1
2

1
b2

pmn

∑
b2u 1 TD

µ
b2

T

∂∏

1
1

b2
��m un�, (8)

where

tP � zb0, tq � lTb1, tp � 2hb2 , (9)

are the relaxation times, b0, b1, and b2 are the relaxation
coefficients. These three new coefficients are functions of
primary thermodynamic variables such as pressure, num-
ber density, and energy density, and hence depend on the
equation of state. Relaxation time is the distinguishing fea-
ture of hyperbolic causal theories which is not present in
the first-order theories. Here ti is the time taken by the
corresponding dissipative flux to relax to its steady-state
value.

For the 1 1 1 dimensional Bjorken [18] similarity fluid
flow the energy equation (1) becomes

d´

dt
1

´ 1 p
t

2
2
3

1
t

F 1 P
1
t

� 0 , (10)

where F � p00 2 pzz is determined from the shear vis-
cous tensor evolution equation (8)
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d
dt

F � 2
1

tp

F 2
1
2
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µ
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T
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1
2
3

1
b2

1
t

. (11)

The equation for P will not be needed as explained be-
low. For this initial study a simple equation of state is
used, namely that of a weakly interacting plasma of mass-
less u, d, s quarks and gluons. The pressure is given
by p � ´�3 � aT4 with zero baryon chemical potential.
Here a is a constant determined by the number of quark
flavors and the number of gluon colors. In the case of
massless particles the bulk pressure equation (6) does not
contribute since the bulk viscosity is negligible or vanishes
[12]. The only relaxation coefficient we need is b2 which
for massless particles is given by b2 � 3�4p. The shear
viscosity is given by [19] h � bT3 where b is a constant
determined by the number of quark flavors and the number
of gluon colors. The energy equation (10) and the viscous
stress equation (11) can be written as

d
dt

T � 2
T
3t

1
T23F

18at
, (12)

d

dt
F � 2

2aTF

3b
2

1
2

F

µ
1
t

2 5
1
T

d

dt
T

∂
1

8aT4

9t
,

(13)

where

a �

µ
16 1

21
2

Nf

∂
p2

90
, (14)

b � �1 1 1.70Nf�
0.342

�1 1 Nf�6�a2
s ln�a21

s �
. (15)

Here Nf is the number of quark flavors, taken to be 3,
and as is the strong fine structure constant, taken to be
0.5. For a perfect fluid and a first-order theory the energy
equation (12) can be solved analytically to give

T�t� � T0

∑
t0

t

∏1�3

�perfect fluid� , (16)

T�t� � T0

∑
t0

t

∏1�3Ω
1 1

b
6a

1
T0t0

µ
1 2

∑
t0

t

∏2�3∂æ

�first-order theory� . (17)

In the first-order theory we do not have the relaxation
coefficients. Then Eq. (11) gives F � �4h�3��t. The
above equations and the numerical solution to the sec-
ond order equations (12) and (13) are presented in Figs. 1
through 4. We choose the initial temperatures to cor-
respond to those expected at RHIC and LHC, namely
T0 � 500 MeV at RHIC and T0 � 1000 MeV at LHC.
In Figs. 1 and 2 the initial time t0 is estimated by us-
ing the uncertainty principle [20]: t0 ? �E�0 � 1 where
�E�0 � 3T0 for massless particles. This results in t0 �
0.13 fm�c at RHIC and t0 � 0.07 fm�c at LHC. The
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FIG. 1. Proper time evolution of temperature for a RHIC sce-
nario: t0 � 0.13 fm�c and T0 � 500 MeV.

initial value used for F, which must be specified indepen-
dently for the second-order theory, is taken to be p�3. We
choose this value since the second-order theory is based on
the assumption that the dissipative fluxes are small com-
pared to the primary thermodynamic variables, namely p,
n, and ´. However, a thorough study of the initial con-
ditions on these dissipative fluxes is needed and should
perhaps be found from microscopic models. This is a sub-
ject of current study [17]. The effect of dissipation is more
pronounced at the very early stages of heavy-ion collisions
when gradients of temperature, velocity, etc., are large. At
late times the effect of dissipation vanishes. In Figs. 3
and 4 we take a constant initial time t0 � 1.0 fm�c which
is the characteristic hadronic time scale. Euler hydrody-
namics predicts the fastest cooling. The first-order the-
ory significantly underpredicts the work done during the
expansion relative to the Müller-Israel-Stewart and Euler
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FIG. 2. Proper time evolution of temperature for a LHC sce-
nario: t0 � 0.07 fm�c and T0 � 1000 MeV.
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FIG. 3. Proper time evolution of temperature for a RHIC sce-
nario: t0 � 1.0 fm�c and T0 � 500 MeV.

predictions. Thus the temperature decreases more slowly
with the inclusion of dissipative effects. This would lead to
greater yields of photons and dileptons, and also the trans-
verse energy/momentum would be reduced as the collec-
tive velocities are dissipated into heat. The system takes
longer to cool down. This will delay freeze-out. Also
entropy, s � 4aT3, is enhanced. This is important be-
cause entropy production can be related to final multiplic-
ity. With respect to entropy production due to particle
production, see [21].

Given some initial conditions we want to investigate
the importance of second-order theories as compared to
first-order theories and perfect fluids. Let us now analyze
the differences between the second-order and first-order
theories. The first thing we notice is that the Eckart-
Landau theory predicts that at early times the tem-
perature will first rise before falling off. This is more
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FIG. 4. Proper time evolution of temperature for a LHC sce-
nario: t0 � 1.0 fm�c and T0 � 1000 MeV.
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pronounced when we have small initial times. Naively one
would expect that the system would cool monotonically
as it expands even in the case of dissipation where energy
momentum is conserved. On the other hand, it is seen
that for large initial times and high temperatures the three
theories have a similar time evolution. As can be seen
from Fig. 4, all three cases start at the same point and
then fall off with time. The difference stems from the fact
that in the second-order theory the transport equations of
the dissipative fluxes describe the evolution of these fluxes
from an arbitrary initial state to an equilibrium state. The
first-order theory, though, is just related to the thermody-
namic forces which, if switched off, do not demonstrate
relaxation. Hence they are sometimes referred to as
quasistationary theories. As can be seen from Fig. 4, it
is before the establishment of an equilibrium state that
the two theories differ significantly. In ultrarelativistic
heavy-ion collisions, where the fluid evolution occurs
in very short times, the second-order theories should be
used to analyze collision dynamics. In doing so a full
analysis requires that all the dynamical equations with
more realistic equations of state and transport coefficients
be considered.

I will conclude by pointing out some of the advantages
and challenges of the second-order theories. Second-order
theories, being hyperbolic in structure, lead to well-posed
initial-value (Cauchy) problems. They also lead to causal
propagation. Unlike the first-order theories, second-order
theories have relaxation terms which permit us to study the
evolution of the dissipative fluxes. The challenge we face
is the increase in the space of thermodynamic variables.
We now have, in addition to the transport coefficients, new
coefficients in the problem. These are the relaxation co-
efficients bi and the coupling coefficients ai . These new
coefficients depend on the primary thermodynamic vari-
ables, such as n, ´, and p, and therefore are determined
by the equation of state. Like viscosity and thermal con-
ductivity, which are required to be positive by the second
law of thermodynamics, these new coefficients are con-
strained by hyperbolicity requirements. In principle, in
order to solve the second-order relativistic dissipative fluid
dynamic problem, one still needs the equation of state, ini-
tial conditions, and the transport coefficients.

To probe nonequilibrium properties of matter produced
in heavy-ion collisions we need a nonequilibrium fluid
dynamics model to analyze observables. The relativistic
fluid dynamics modeling of heavy-ion collisions will have
to include dissipation and thermal conduction. One will
then have to use the hyperbolic theories of relativistic
dissipative fluids because of their universality. Hyperbolic
theories might prove to be convenient in constructing
hydromolecular dynamic schemes [22] in which a phe-
nomenological fluid dynamics model is coupled to a
microscopic kinetic model such that microscopic kine-
matic quantities may be obtained. Dissipation mechanism
might be important if we deal with the event-by-event
based hydrodynamics [23].
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