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Spin Waves in a Bose-Einstein–Condensed Atomic Spin Chain
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The spin dynamics of atomic Bose-Einstein condensates confined in a one-dimensional optical lattice
is studied. The condensates at each lattice site behave like spin magnets that can interact with each other
through both the light-induced dipole-dipole interaction and the static magnetic dipole-dipole interaction.
We show how these site-to-site dipolar interactions can distort the ground-state spin orientations and lead
to the excitation of spin waves. The dispersion relation of the spin waves is studied and possible detection
schemes are proposed.
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Rapid experimental progress in the realization of
trapped degenerate quantum atomic gases has generated
fascinating opportunities to study a wide range of physical
phenomena in atomic physics, condensed matter physics,
and quantum optics. In particular, the recent success in all-
optical confinement [1,2] and formation [3] of atomic
Bose-Einstein condensates provides a unique tool to
explore the magnetic properties and spin-dependent
dynamics of ultracold atomic gases [4]. In this Letter, we
propose a scheme to study the excitation and propagation
of spin waves in an array of atomic spinor Bose-Einstein
condensates confined or created in an optical lattice.

Spin-wave phenomena play an important role in solid
state physics [5]. In solids, spin-wave excitations result
from the exchange interaction of electrons between atoms
in the crystal. They are usually associated with spin-1�2
Fermi systems with an effective interaction range of a few
angstroms, a typical lattice period in solid materials. Al-
though the Bose-Einstein–condensed atoms in optical lat-
tices exhibit a number of close analogies to atoms in a
real crystal, a number of differences exist. (i) The atomic
spacing in an optical lattice is of the order of half an op-
tical wavelength and as such is much larger than a crystal
lattice period. (ii) As a result, the electron exchange inter-
action is completely negligible: spin waves, if they exist,
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must be caused by other forms of long range interactions.
(iii) There is a large number of (bosonic) atoms at each lat-
tice site, typically of the order of 1000 or more, and they
are subject to Bose-enhancement effects. As a result of
these differences, the Bose condensates in an optical lat-
tice offer a totally new environment to study spin dynamics
in periodic structures.

The schematic diagram of Fig. 1 shows the system
discussed in this Letter. We consider for concreteness a
one-dimensional (1D) optical lattice formed by two p-
polarized laser beams counterpropagating along the y
axis. We assume that, in the x-z plane, Bose-Einstein–
condensed alkali atoms in their hyperfine ground-state
manifold are tightly confined by an optical dipole potential
arising from either the transverse profile of the lattice field
or from a separate laser. Hence a 1D coherent atomic
chain is formed along the y axis. We employ a spinor
atomic field theory to describe the interaction of the
atoms with the lattice laser beams. For large detunings
D � vL 2 va between the frequency vL of the laser
fields and the atomic transition frequency va it is possible
to adiabatically eliminate the excited atomic state field
operator. The resulting Heisenberg equations of motion
for the hyperfine ground-state atomic field operators
ĉm�r, t�, including interatomic collisions and static mag-
netic dipole-dipole interaction, take the form [6–9]
ih̄
≠ĉm
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�

∑
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where VL�r� � U0 exp�2r2
��W2

L� cos2�kLy� is the light-induced lattice potential, with r� �
p
x2 1 z2, kL � 2p�lL

the wave number, and WL the width of the lattice beams. The potential depth is defined as U0 � h̄jVj2�6D with V

being the Rabi frequency. The index m � 2F, . . . ,F denotes the Zeeman sublevels of the electronic ground state of the
atoms with angular momentum F. In this Letter we take F � 1 for the ground-state alkali atoms.

The first nonlinear term in Eq. (1) originates from the photon-exchange interaction between the condensed atoms. It
describes the light-induced dipole-dipole interaction and is characterized by the quantity
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where g is the single-atom spontaneous emission rate and
dmn � �F �1�

mn e21 1 F�2�
mn e11��6h̄ denotes the dipole mo-

ments induced by the p-polarized light fields. Here, F�6�
mn

are the matrix elements of the “1” and “ 2” components
of the total angular momentum operator F, and e61,0 are
unit vectors in the spherical harmonic basis. The ten-
sor W, describing the spatial profile of the light-induced
dipole-dipole interaction, has the form
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where 11 is the unit tensor, r � r�jrj, and j � kLjrj.
The two-body ground-state collisions and magnetic

dipole-dipole interaction are described by the potentials
Vcoll
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respectively, where ls and la are related to the s-wave
scattering lengths of the spinor condensate [9].

The optical potential associated with a sufficiently
deep optical lattice is equivalent to a periodic array of
independent “microtraps” [2]. If the depth of each of
those is large enough, an array of independent Bose con-
densates can be formed in the lattice, and it is convenient
to expand the spinor atomic field operator as ĉm�r� �P
i fi�r�âm�i�, where fi is the condensate wave function

for the ith microtrap, and the operators âm�i� satisfy
the bosonic commutation relations �âm�i�, âyn �j�� �
dmndij. For deep enough microtraps the spatial overlap
between the individual condensate wave functions is
negligible, and they can be considered as independent.
Under this tight-binding condition, the spatial wave
function of the ith condensate is then determined by the
Gross-Pitaevskii (GP) equation �2 h̄2=2

2m 1 Vi�r� 1

ls�Ni 2 1� jfi�r�j2�fi�r� � mifi�r�, with Vi�r� �
U0 exp�2r2

��W 2
L� cos2�kLy 1 ip� for 0 , y , lL�2

being the potential near the ith microtrap, Ni �P
m�âym�i�âm�i�� the number of condensed atoms at the

site, and mi the chemical potential.
We remark that the local dipole-dipole interaction is

ignored in the GP equation. Its effect on the condensate has
recently been studied by a number of authors [10–12], and
it may lead to an instability, depending on the geometry of
the confining trap. For a pancake trap, the condensate is
always stable [10] if the aspect ratio l � �vr�vz �1�2 ,

0.4. In the case of an optical lattice, each “microtrap” is
approximately pancakelike. For the range of parameters
used in this paper, the aspect ratio of the microtrap falls
into the stable regime. Furthermore, the atomic number
N at each lattice site is small which reduces the effect
of the dipole-dipole interaction [10,11]. As a result, the
dipole-dipole interaction within each site can be safely
ignored.

For F � 1, the individual condensates consist of atoms
with three Zeeman sublevels, hence they behave as col-
lective spin magnets in the presence of external mag-
netic fields. Such spin magnets form a 1D coherent spin
chain along the optical lattice. Under the tight-binding ap-
proximation and ignoring both the nonresonant and spin-
independent constant terms, we can construct the spin
Hamiltonian from Eq. (1),
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z
j

2
X
jfii

Jij�Ŝ
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where we have defined the collective spin operators Ŝi �P
mn â

y
m�i�Fmnân�i�, with components Ŝ

	6,z

i . We have also

introduced an external magnetic field B � B0e0 whose
strength is strong enough to polarize the ground-state spin
orientations of the atomic chain along the quantization axis
z [4]. The parameter gB � 2mBgF is the gyromagnetic
ratio, with mB being the Bohr magneton and gF the Landé
g factor.

The first term in Hamiltonian (2) results from the spin-
dependent interatomic collisions at a given site, with l0

a �
�1�2�la

R
d3r jfi�r�j4. The last two terms describe the

site-to-site spin coupling induced by both the static mag-
netic field and light-induced dipolar interactions. The
coupling coefficients have the explicit forms
Jzij �
m0g

2
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where we have introduced a cutoff function fc�r� � exp�2r2�L2
c� to describe the effective interaction range of the light-

induced dipole-dipole interaction, with Lc � Ng�c being the coherence length associated with the collective spontaneous
emission of N atoms [13].
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FIG. 1. Schematic diagram shows that a spinor condensate is
confined in an optical lattice in the y axis with an external
magnetic field along the z direction.

The physics implicit in Hamiltonian (2) is quite clear.
Consider first the situation without site-to-site coupling,
Jij � 0. In the presence of a sufficiently strong external
magnetic field, the spins align themselves along the quan-
tization axis z. For ferromagnetic condensates, as in the
case of 87Rb �l0

a , 0� [14,15] (or in the presence of a
strong external magnetic field for antiferromagnetic con-
densates), the ground state of the Hamiltonian is jGS� �
jN , 2N �, where N �

P
i Ni is the total atomic number in

the lattice. The total spin at site i has the expectation
value �Ŝzi � � 2Nih̄, where the factor Ni is due to Bose
enhancement.

For Jij fi 0, the situation changes drastically: the trans-
fer of transverse spin excitation from site to site is allowed,
resulting in the distortion of the ground-state spin struc-
ture. This distortion can propagate and hence generate spin
waves along the atomic spin chain. From Hamiltonian (2),
we can derive the Heisenberg equations of motion for the
spin excitations as

i≠Ŝ�2�
q �≠t � �v0 1 Dvq�Ŝ�2�

q 2
X
jfiq

xqjŜ
�2�
j , (4)

where we have replaced the spin operator Ŝzq by its ground-
state expectation value in the mean-field approximation.
v0 � 2gBB and Dvq � 2

P
jfiq J

z
qjNj h̄ determine the

precessing frequency of the qth spin, while the nonzero
spin-coupling coefficients xqj � 2JqjNqh̄ give rise to the
propagation of the spin waves. From Eq. (3), we observe
that the light-induced dipolar interaction contributes only
to spin coupling in the x-y plane. This is because the
p-polarized lattice beams induce an effective dipole mo-
ment only in that plane.

To further understand how Eq. (4) determines the exis-
tence and propagation of spin waves, it is helpful to con-
sider the special case where the lattice is infinitely long
and the spin excitations are in the long-wavelength limit.
We can then reexpress Eq. (4) in its continuous limit by
the replacements Ŝ

�2�
q ! S�y, t�, xqj ! x�y 2 y0�, and

�v0 1 Dvq� ! v�y�,
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i
≠S�y, t�

≠t
� v�y�S�y, t�

2
2

lL

Z
dy0 x�y 2 y0�S�y0, t�. (5)

In the long-wavelength limit, the last integral term in
Eq. (5) can be evaluated up to the second-order expansion
of S�y0, t�. This leads to an effective Schrödinger equation

i
≠S�y, t�

≠t
�

∑
2

b1

2
≠2

≠y2 2 b0 1 v�y�
∏
S�y, t� , (6)

where we have defined bn � �2�lL�
R
dh x�h�h2n for

n � 0, 1. Evidently, from Eq. (6), S�y, t� describes the
“waves” caused by spin excitations in the x-y plane. These
waves can be associated with the center-of-mass motion
of a quantum-mechanical particle of effective mass m �
h̄�b1. Being similar to the phonon associated with sound
waves, the excitations associated with the spin waves are
usually referred to as “magnons” [5].

We can evaluate the magnon dispersion relation by
solving the discrete wave equation (4) for waves of the
form Ŝ

�2�
q � âk exp�2i�v0 1 Dv0 2 2

P
j.0 x0j�t� 3

exp�i�kqlL�2 2 vkt��. For simplicity, we assume a
lattice with each site having the same number of atoms,
Ni � N0. This yields the dispersion relation

vk � 2
X
j.0

x0j�1 2 cos�jklL�2�� , (7)

where we have taken q � 0 in the coefficients of Eq. (4)
since their values are independent of q in the case at hand
as long as we have a sufficient number of lattice sites.

Figure 2 shows the magnon dispersion spectrum and
its dependence on the transverse width w of the Bose-
Einstein–condensates. As w increases, the dipolar inter-
actions among atoms tend to cancel each other, thereby

k/kL

ω
k (

kH
z)

w=2λL

w=6λL

w=8λL

FIG. 2. Magnon dispersion spectrum. In the calculation, we
have assumed that the spatial dimension along the y axis of the
condensate in each lattice site is much less than lL, while, in the
transverse (x-z) plane, the condensate has a Gaussian shape with
a width w. We have taken lL � 1 mm and gjVj2�D2 � 103

and used a total number of 100 lattice sites with 2000 atoms in
each site.
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FIG. 3. Magnon detection schemes.

reducing the excitation frequency of the spin waves. As
a result, it becomes difficult to excite the spin waves in
the coherent atomic chain through the dipole-dipole inter-
action for condensate widths much larger than one opti-
cal wavelength. In addition, our numerical calculations
show that for typical experimental parameters the strength
of the light-induced dipolar interaction dominates over the
magnetic dipolar interaction in the determination of the
coupling coefficients x0j .

Having established the existence of spin waves in con-
densate lattices, it remains to determine how to detect
them. Any optical or magnetic method which can excite
the internal transitions between the atomic Zeeman sub-
levels can be used for this purpose. On the other hand,
the detection scheme should be able to distinguish differ-
ent spin wave modes (see discussion below). A natural
choice consists of employing Raman transitions, as shown
in Fig. 3. The coupling of the Zeeman sublevels produced
from the Raman beams exactly creates the spin transition
associated with the operators Ŝ�6�. The existence of spin
waves can then be detected by measuring the absorption of
one of the Raman beams. The absorption spectrum is pro-
portional to the sum of the transition probabilities among
the Zeeman sublevels,

P ~
X
k

j�Fk jS1
q jGS�j2

2

sin2��n 2 vp 2 vk�t�2�
��n 2 vp 2 vk�t�2�2 ,

where the kets jFk� denote excited states with spin waves
of frequency vk, n is the frequency difference between
the two Raman beams, t is the measurement time, and
vp � v0 1 Dv0 2 2

P
j.0 x0j defines the total spin pre-

cessing frequency. Absorption resonances occur whenever
the frequency n is tuned to match a spin-wave frequency
vk. For an infinitely long lattice, this will produce a broad-
ened absorption spectrum whose width characterizes the
existence of spin waves. In practice, though, the optical lat-
tice is finite with length L. Such lattices allow only the ex-
citation of spin waves with discrete wave numbers resulting
from the resonance excitation condition kL � np, k being
the wave number of the spin waves in Eq. (7). As a result,
the absorption spectrum will exhibit a multipeak structure.
In the long-wavelength limit, the interval between peaks
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is proportional to Dvk � �2n 2 1� �p�NL�2
P
j.0 x0jj2,

with NL being the total number of lattice sites.
In current experiments in optical lattices, NL is in the

range of �10 100, and each lattice site can accommodate
a few thousand atoms. This leads to a requirement for the
frequency measurement precision of about �10 100 kHz.
This is achievable with current techniques.

Alternatively, one can also carry out measurements in
momentum space. The magnons associated with spin
waves of wave number k have momenta p � h̄key . If one
observes the Raman scattering using two Raman beams
through the Bose gas, the momentum conservation be-
tween the magnons and Raman photons requires Dk �
key with Dk being the difference of wave vectors between
two Raman beams. Hence the momentum distribution of
the scattered Raman photons can identify the existence of
the spin waves.

In conclusion, Bose condensates in an optical lattice
offer a new tool and test ground to study the quantum spin
phenomena. The Bose statistics in each lattice site makes
the atoms behave like a spin magnet. Such spin magnet
arrays not only exhibit fascinating spin dynamics as shown
in this Letter, but also may find potential applications in
quantum information and computation.
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