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Comment on “Bicritical and Tetracritical
Phenomena and Scaling Properties
of the SO(5) Theory”

Recently, Hu [1] used Monte Carlo (MC) simulations on
an SO(5) rotator model and concluded that the multicritical
point which characterizes the simultaneous ordering of the
SO(3) “antiferromagnetic” 3-component and of the U(1)
“superconducting” 2-component order parameters, �s and
�t, has the critical behavior of the isotropic 5-component
rotator model. This contradicts the renormalization group
(RG) in d � 4 2 e dimensions, which states that (a) to a
high order in e, the isotropic SO�n� fixed point (IFP) is un-
stable for n . nc, with nc , 4 [2] and (b) to order e, this
multicritical point is described by the anisotropic biconical
fixed point [3,4]. Measurements of isotropic 5-component
critical exponents at this multicritical point were proposed
as “measuring the number 5,” confirming the SO(5) theory
for high-Tc superconductivity [5].

Here I show that, in fact, at d � 3 the multicritical point
must be tetracritical, being characterized by the decoupled
fixed point (DFP): asymptotically the free energy breaks
into a sum of the two free energies, �s and �t exhibit the
Heisenberg (n � 3) and XY (n � 2) critical exponents,
and the two critical lines cross each other at finite angles,
with the crossover exponent f � 1.

The stability of the DFP follows from an exact argu-
ment, which was already presented in 1976 [2,6]: at this
point, the coupling term wj�sj2j�tj2 scales like the prod-
uct of two energylike operators, having the dimensions
�1 2 an��nn, where an and nn are the specific heat and
correlation length exponents. Thus, the combined operator
has the dimension d 2 lD , where
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is the scaling exponent which determines the RG flow of
the coefficient of this term near the DFP. The known
negative values of a2 and a3 at d � 3 [7] then yield
l � 20.087 , 0, and the DFP is stable, in contrast to
the order-e extrapolation to e � 1 [3,4].

Reference [1] used a discrete spin model, with j�sj2 1

j�tj2 � 1. This is believed to be in the same universal-
ity class as a Ginzburg-Landau-Wilson theory, with the
quartic term u�j�sj2 1 j�tj2�2 (where initially u ! `) [8].
Reference [1] then added a coupling wj�sj2j�tj2. Quantum
fluctuations [9] and RG iterations [2] then also generate
a term y�j�sj4 2 j�tj4�. There exist six fixed points in the
u 2 y 2 w parameter space, of which only one is stable
[10]. For a continuous transition, the above argument im-
plies an RG flow away from the vicinity of the unstable
IFP, at y � w � 0, to the DFP, where 2u 1 w � 0. This
flow may be slow, since the related exponents l
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I are small: the asymptotic DFP behavior can be ob-

served only if wXl
w
I becomes comparable to u, which is

large. Here, X � max�L, j�, with L the sample size and
j � �T 2 Tc�2n the correlation length (Tc is the tempera-
ture at the multicritical point). The simulations of Ref. [1],
which begin close to the ITP (u ¿ y, w) and use relatively
small L, apparently stay in the transient regime which ex-
hibits the isotropic exponents. To observe the true asymp-
totic decoupled behavior, one should start with a more
general model, allowing different interactions for �s and
for �t, relax the strong constraint j�sj2 1 j�tj2 � 1, and use
much larger X. The latter is also needed due to the small
value of lD. These requirements may be impossible for
realistic MC simulations.

All the above statements assume that the initial Hamil-
tonian is the region of attraction of the DFP. Alternatively,
one should expect a first order transition. The possibil-
ity that both the IFP and the DFP are stable is highly un-
likely, given the wide evidence that nc , 4 and the proof
of Ref. [10]. The apparent experimental observation of
IFP exponents [5] may still indicate that the initial Hamil-
tonian is close to the ITP.
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