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Field-Induced Transitions in a Kagomé Antiferromagnet
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The thermal order by disorder effect in magnetic field is studied for a classical Heisenberg antiferro-
magnet on the Kagomé lattice. Using analytical arguments we predict a unique H-T phase diagram for
this strongly frustrated magnet: states with a coplanar and a uniaxial triatic order parameter, respectively,
at low and high magnetic fields and an incompressible collinear spin-liquid state at one-third of the
saturation field. We also present the Monte Carlo data which confirm the existence of these phases.
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Geometrical frustration in lattice spin models is respon-
sible for complete suppression of conventional magnetic
order and appearance of nonmagnetic spin liquids or states
with exotic order parameters [1]. Applied magnetic field
can further enhance frustration. A well known example is a
weakly frustrated triangular lattice antiferromagnet, which
acquires an additional continuous degeneracy in external
field [2]. Investigation of high-field effects in strongly frus-
trated magnets poses a new challenge for experimental and
theoretical studies [3,4].

The Heisenberg antiferromagnet on the Kagomé lattice
(see Fig. 1) is a strongly frustrated spin model, which is
approximately realized in a number of insulating layered
magnets: SrCr8Ga4O19 [5] and Ba2Sn2Ga3ZnCr7O22 [6]
(both with S � 3�2), KFe3�OH�6�SO4�2 �S � 5�2� [7].
Gd3Ga5O12 �S � 7�2� is another frustrated magnet on a
related three-dimensional garnet lattice of corner-sharing
triangles, which is often called a hyper-Kagomé lattice.
This magnet has a weak exchange constant J � 1 K and
a peculiar unexplained phase diagram in the magnetic field
[3]. Motivated by the above materials with large values
of spin we investigate in this Letter the finite-temperature
magnetization process of a classical antiferromagnet on the
Kagomé lattice. We predict three distinctive field regimes
below the saturation field Hsat, where exotic spin phases
are stabilized.

The Hamiltonian of a nearest-neighbor Heisenberg anti-
ferromagnet on the Kagomé lattice with classical unit spins
can be written up to a constant term as

Ĥ �
1
2

N�X
���

�JS2
� 2 H ? S�� , (1)

where the sum runs over all triangles, S� is the total spin
of a triangular plaquette, and N� �

2
3N is the number of

plaquettes on an N-site lattice. The zero-field classical
constraint S� � 0 fails to define a unique ground state.
The ground state coplanar configurations are constructed
by fixing spins on a first plaquette to a 120± structure with
left or right chirality for the triad êa, êb, and êc and, then,
tiling this triad over the whole lattice in a way that three
spins on every plaquette are different [8–10]. The number
of all such states for the Kagomé lattice is known exactly:
UN with U � 1.1347 . . . [11]. Nonplanar ground states
0031-9007�02�88(5)�057204(4)$20.00
are constructed from planar configurations by identifying
so-called weather vane defects [9].

The thermal order by disorder effect can appear
because of a different entropy of short-wavelength fluctu-
ations above degenerate configurations [12]. All coplanar
states for a Kagomé antiferromagnet show identical
harmonic spectra. They have one flat zero-energy branch
with N4 �

1
3N modes, which corresponds to anharmonic

quartic excitations [8–10]. A nonzero harmonic mode de-
scribed by a classical coordinate y has an energy increase
DE2 � Jy2 and contributes 1

2T ln�J�T� to the thermo-
dynamic potential, whereas a soft quartic mode with
DE4 � Jy4 makes a reduced contribution of 1

4T ln�J�T�.
Coplanar configurations have the largest number of soft
modes and are, therefore, selected by thermal fluctuations
[8]. Soft modes in coplanar states correspond to alternate
tilting of spins out of the ground state spin plane around
elementary hexagons. There are 1

3 N hexagons on the
Kagomé lattice. The counting of soft modes from such a
geometrical point of view, thus, agrees with the spin-wave
analysis.

Harmonic fluctuations do not select between various
planar configurations, though the highest statistical weight
corresponds to a so-called

p
3 3

p
3 structure [10]. The

low-temperature phase has nematic correlations of the
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FIG. 1. Schematic phase diagram of the classical Kagomé
antiferromagnet. The top inset shows the clapping mode for
quasicollinear states. The lower inset shows a unit cell of thep

3 3
p

3 quasicollinear state: filled and empty circles denote
the b- and a-type spins, respectively.
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chirality vectors defined on every plaquette [8]. Besides,
the broken symmetries include selection of the spin triad.
The residual symmetry group is determined by the two
elements: C6T̂ and U2, where C6 is a spin rotation
by p�3 about normal to the spin plane, T̂ is the time
reversal, and U2 is a rotation by p about one of the three
in-plane axes. The order parameter for low-temperature
phases of the Kagomé antiferromagnet is a three-point
correlation function taken on one plaquette:

�Sa�r1�Sb �r2�Sg�r3�� � Sabg, (2)

which has only a spin part described by a fully symmetric
traceless tensor Sabg [9,13]. For coplanar states at H � 0
this tensor is parametrized as

Sabg �
X

a$b$c

êa
a ê

b
b êg

c . (3)

Note that the three-spin (triatic) order parameter breaks
explicitly the time-reversal symmetry, which determines
its nontrivial coupling to an applied field.

In a finite magnetic field the classical energy Eq. (1)
reaches the minimum provided that

S� � H��2J� (4)

for every plaquette. Since jS�j # 3, above the satura-
tion field Hsat � 6J all spins are aligned parallel to H.
We are interested in the field range 0 , H , Hsat, where
the classical ground state possesses an infinite degeneracy.
The degeneracy is further enhanced by a field because the
minimum energy constraint does not require spins on one
plaquette to lie in the same plane. Shender and Holdsworth
made the only attempt to understand the finite field be-
havior of the Kagomé antiferromagnet [14]. They noticed
that spin coplanarity responsible for the increased num-
ber of soft modes is preserved if the spin plane is paral-
lel to an external field. Hence, thermal fluctuations create
magnetic anisotropy, which orients at low temperatures the
spin plane.

There is an additional effect missed in the above con-
sideration and related to the triatic nature of the spin order
parameter. Once selection of the spin plane takes place,
an extra macroscopic degree of freedom appears: orien-
tation of the spin triad inside the plane relative to H.
At T � 0 all orientations have the same classical energy,
though the spin triad distorts differently, when it forms
different angles w with the magnetic field. This distor-
tion modifies harmonic fluctuations inside the spin plane.
In such cases with a one-parameter continuous degeneracy
thermal fluctuations always produce the order by disorder
effect and select a homogeneous state for one particular
value of the parameter [12]. The orientational field effect
for the triatic order parameter is described by an invariant
Ean � HaHbHgSabg ~ H3 cos3w, which is present in
the Landau functional because of a broken time-reversal
symmetry in the triatic phase. The minimum energy is
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reached for w � 0 or p depending on a sign of the pref-
actor, i.e., one of the triad vectors has to be either parallel
or antiparallel to the applied field.

To find the equilibrium orientation of the spin triad in ex-
ternal field, we performed spin-wave calculations. The har-
monic spectrum of a coplanar state at H fi 0 depends not
only on the triad orientation but also on the way the triad is
tiled over the lattice. We used, therefore, the

p
3 3

p
3 and

the q � 0 structures [10] as two example cases. For both
structures w � p is selected by fluctuations with Ean �
5.0T�H�Hsat�3N cos3w and 1.3T�H�Hsat�3N cos3w, re-
spectively. Thus, thermal fluctuations in a weak magnetic
field create anisotropy for the spin plane as well as inside
the plane. The Kagomé antiferromagnet at low fields is
described by the coplanar triatic order parameter (3) with
one of the spin triad vectors being antiparallel to the field
direction (Fig. 1).

Generally, classical ground states at an arbitrary field
0 , H , Hsat are all noncollinear. Collinear configura-
tions appear among the ground state manifold only at spe-
cial rational values of the applied field. The up-up-down
(uud) structure has jS�j � 1 and, hence, is stable only
at Hc � 2J �

1
3 Hsat. The problem of calculating the to-

tal number of the uud states for the Kagomé lattice at
H � Hc can be mapped onto the problem of dimer cov-
erings of a dual hexagonal lattice, which is solved ex-
actly [11]. The number of uud states scales as V N , with
V � 1.1137 . . . . A special role of such collinear spin con-
figurations in magnetic field for various frustrated models
has been recently emphasized in [4]. Standard harmonic
analysis for the Kagomé antiferromagnet at H �

1
3 Hsat

yields three twofold degenerate excitation branches for an
arbitrary uud state:

v1
k � 0, v

2,3
k � 3 6

q
3�1 1 2gk� , (5)

with gk �
1
3 �coskx 1 2 cos 1

2kx cos
p

3
2 ky�. Therefore, the

collinear states have N4 �
2
3 N soft quartic modes, twice

more than any coplanar state. This fact has a simple geo-
metrical origin. Local soft modes correspond to alternate
tilting of spins around elementary hexagons. For collinear
states such distortions have two polarizations in two di-
rections perpendicular to the field, while coplanar states
have soft modes only in the polarization transverse to the
spin plane.

Thermal fluctuations reduce the free energy of the uud
states compared to other noncollinear classical ground
states at H �

1
3Hsat. Further lifting of degeneracy within

the discrete subset of the uud states does not occur due
to the same mechanism as for coplanar states at H � 0
[8,9,14]. Every collinear state has special lines of weather
vane defects, which contain alternating sequences of
u-d-u-d spins. Flipping all spins along such a line by
180± produces another collinear state at the free energy
cost DF � T . A macroscopic temperature independent
number of such defects is generated at low T ’s leaving
057204-2
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all uud states accessible for the magnet and creating a
collinear spin liquid. An enhanced number of soft modes
is also reflected in the specific heat C: out of 2N degrees
of freedom for N classical spins, every quadratic mode
contributes 1

2kB to the specific heat, while a quartic mode
does only 1

4kB [8]. Hence, C � 	1 2 N4��4N�
kB per
one spin and we expect C �

5
6kB for the collinear spin

liquid compared to C �
11
12kB for coplanar states. Specific

heat measurement in numerical simulations provides a
useful way to distinguish different spin states.

The free energy for the collinear spin liquid is lower by
�NT ln�J�T� compared to any noncollinear state. But a
small deviation of field away from H �

1
3 Hsat produces

only a little change in the classical energy. The collinear
spin liquid is, therefore, stabilized by anharmonic inter-
actions to a finite field range in a way similar to stabi-
lization of the incompressible quantum fluid states in the
fractional quantum Hall effect. The collinear spin liquid
phase yields a weak magnetization plateau at 1�3 of the
saturated magnetization: spins in the uud states cannot tilt
towards the field and a weak variation of the magnetiza-
tion for the collinear spin liquid is produced by thermal
excitations alone. The above arguments also suggest the
first-order transition from the collinear spin liquid state to
the low- and the high-field phases at low temperatures.

In the field range 1
3 Hsat , H , Hsat the ground state

configurations are again all noncollinear. There appear,
however, new quasicollinear states with two coinciding
spins of the basis triad êb � êc, which have zero chirality
on every plaquette (Fig. 1). These configurations belong to
the subset of coplanar states. Hence, a quasicollinear state
has all the soft excitations of coplanar states: 1

3N quar-
tic modes in the polarization transverse to the spin plane.
In addition, they acquire extra in-plane soft modes. For a
single plaquette, such a clapping-type mode corresponds
to simultaneous tilting of the two parallel spins in oppo-
site directions inside the spin plane (Fig. 1). To preserve
a weak anharmonic energy change the clapping deforma-
tion has to be extended on the lattice along a loop which
contains only the b-type spins. The shortest such loop is
the perimeter of a hexagon, while the number of appropri-
ate hexagons is maximized if a quasicollinear state is tiled
in the

p
3 3

p
3 structure (Fig. 1). Thus, the

p
3 3

p
3

quasicollinear state has the largest number of soft modes
N4 �

4
9N at 1

3Hsat , H , Hsat.
Nevertheless, the true breaking of the translational sym-

metry does not take place. The disordering mechanism
is again related to the presence of loops of alternating
spin orientations or weather vane defects [9]. Loop flip-
ping a-b-a-b ! b-a-b-a at zero-energy cost contributes
�T ln�J�T� to the thermodynamic potential because of
the destruction of a few soft modes. Such losses are out-
weighed at small concentrations of defects by the entropy
gain. At finite temperatures there will be a macroscopic
number of defects, which destroy the long-range

p
3 3
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p
3 translational symmetry and create instead a phase with

a uniaxial triatic order parameter:

Sabg � nanbng 2
1
4 �nadbg 1 nbdga 1 ngdab� ,

(6)

where indices run over x, y and n � êa 2 �êa ? ẑ�.
Higher free energy costs make the number of defects in
the uniaxial triatic state to be temperature dependent:
Ndef � TN with diverging magnetic correlation length
j � 1�T . Lacking a conventional magnetic order the
high-field triatic phase asymptotically approaches the
ordered

p
3 3

p
3 quasicollinear structure. This behavior

is reflected in the temperature dependence of the specific
heat which should tend to C �

8
9 kB at low T .

At the saturation field Hsat � 6J the ground state be-
comes nondegenerate and corresponds to parallel align-
ment of spins. The harmonic excitations in this collinear
uuu phase are given by the same expressions (5) as for the
uud states. There are N4 �

2
3N soft modes at this mag-

netic field and the specific heat again reaches the value
C �

5
6 kB. Soft modes also produce a universal magnetic

behavior of the frustrated spin system at the saturation. For
H . Hsat all three branches (5) acquire an additional field
dependent shift dv � �H 2 Hsat�. Taking into account
only the most singular contribution of the first flat branch,
we derive that at H $ Hsat the classical partition function
scales as

Z�H, T � � T1�4f�u�, u � �H 2 Hsat��
p

T . (7)

The susceptibility x � dM�dH determined from (7) is
x � 	 f 00�u��f�u�
 2 	 f 0�u��f�u�
2. At u � 0 �H � Hsat�
the susceptibility becomes temperature independent and all
the curves x�H, T � cross at one point; see Fig. 2.

So far we considered only the short-wavelength degrees
of freedom and completely disregarded long-wavelength
excitations, which determine the nature of phase transi-
tions in two dimensions. The non-Abelian topological de-
fects discussed previously for the triatic order parameter
[9] are suppressed by the field. The two triatic phases break
only U(1) symmetry for rotations about the field direction.
Berezinskii-Kosterlitz-Thouless– type transitions separate
them from the high-temperature paramagnetic phase; see
Fig. 1. In contrast, the first-order transition to the collinear
spin-liquid state survives and corresponds to a gas-liquid–
type transition on the boundary with the paramagnetic
phase. The collinear uuu phase also has an enhanced en-
tropy contribution and is stabilized below Hsat. The cor-
responding line of first-order transitions ends at a critical
point as sketched in Fig. 1.

We have also performed Monte Carlo (MC) simulations
for the model (1). The standard Metropolis algorithm was
used with up to 107 MC steps per every point. Simulations
were done for periodic 3L2-site lattices with L � 6, 12,
18; the data presented in Fig. 2 are for a 972-spin cluster.
The magnetization curve at T � 0 is a straight line with
a slope x � dM�dH �

1
6 . At low temperatures x�H�
057204-3
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FIG. 2. MC results for the classical Kagomé antiferromag-
net. Top panel: Susceptibility vs magnetic field for several
temperatures. The inset shows the magnetization curve at T �
0.01J . Bottom panel: Specific heat vs magnetic field for T �
0.002J (full circles) and T � 0.01J (open squares). The inset
shows the finite-size extrapolation for the squared triatic order
parameter (6).

develops a dip near H �
1
3Hsat corresponding to a weak

plateau at 1
3 Msat. Two peaks, which surround the dip, indi-

cate first-order transitions to the plateau phase. The peaks
become rounded and then completely disappear at higher
temperatures. We estimated T � � 0.025J as the highest
temperature, where the collinear spin liquid still exists
(Fig. 1). Above this temperature the dip corresponds to
a smooth crossover. The field dependence of the specific
heat also follows the above predictions. At T � 0.002J,
the specific heat starts near 11

12kB, corresponding to the
coplanar triatic state, at low fields. As the field approaches
1
3 Hsat, C�H� goes down to 5

6 kB, corresponding to the
collinear spin liquid, and then recovers back to 8

9kB, cor-
responding to the uniaxial triatic state. The specific heat
drops again near the saturation with CjHsat �

5
6kB, while

the minimum value is reached at somewhat lower fields.
Such a behavior signals stabilization of the uuu phase be-
yond its classical boundary: bare negative modes below
Hsat are renormalized into soft modes, which further de-
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crease C�H�. The specific heat also exhibits a peak at
H � 4.8J �T � 0.002J� and H � 3J �T � 0.01J� with
a significant finite-size dependence. We attribute this peak
to a phase transition from the collinear uuu state into a
noncollinear uniaxial triatic state (6). To check this we
have calculated field dependence of the squared triatic or-
der parameter (2) at T � 0.002J for three cluster sizes
and extrapolated it to the thermodynamic limit. Results
are shown in the inset in Fig. 2. The uniaxial triatic phase
disappears at about the same field as the position of the
peak in the specific heat. The present data do not resolve
clearly the order of the phase transition, which must be
determined in a detailed numerical study.

We have shown that the geometrical approach based on
soft mode counting is a powerful tool for the investigation
of the field behavior of a classical Kagomé lattice antifer-
romagnet. Our preliminary analysis shows that a Heisen-
berg antiferromagnet on the related garnet lattice has the
same type of phase diagram (Fig. 1). In particular, the field
range of an asymptotically ordered quasicollinear state co-
incides roughly with a region for a field-induced ordering
observed in Gd3Ga5O12 [3].
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