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A formulation of the Ginzburg-Landau-Wilson version of the partition function of a system with
a continuously varying order parameter as a transfer matrix calculation allows for the application of
methods based on the density matrix renormalization group (DMRG) to the calculation of the free energy
of the O�1� model. The essence of both the mapping and the DMRG calculation is laid out, along with
results that validate this strategy.
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The formulation utilized to analyze the critical point of
the O�1� system in three and more dimensions differs in
fundamental respects from the formulation that has proven
most fruitful in two and fewer dimensions. In the former
case, highly accurate results [1,2] have been obtained with
the use of the Ginzburg-Landau-Wilson effective Hamil-
tonian, which is based on a continuously varying order
parameter. On the other hand, lower dimensional systems
are generally modeled with the use of a fixed-length order
parameter [3,4].

The above state of affairs is acceptable, if not entirely
satisfactory, as long as one is not interested in a system
whose critical point properties possess both three- and
two-dimensional features. Such is the case in the instance
of dimensional crossover in a system with a slablike ge-
ometry. Scaling relations and the renormalization group
predict the asymptotic behavior of such a system when
the correlation bulk three-dimensional correlation length
is asymptotically large or small compared to the finite slab
width. In addition, finite-size scaling indicates the exis-
tence of a general form for the crossover between those
two limits [5,6]. However, the calculation of the specific
form of the crossover function requires a unified theoreti-
cal approach to the critical point properties of a slablike
system in both the three- and two-dimensional regimes.

The calculation of the crossover function, and of the
thermodynamic quantities that can be derived from it, has
been carried out in a few cases. For example, crossover
from three to two dimensions has been worked out in the
mean spherical model [5,7] and in its mathematical equiva-
lent, Bose-Einstein condensation in a noninteracting sys-
tem. Crossover from d to d 2 1 dimensions can also be
determined in an O�1�, or Ising-like, system when d $ 5
[8]. Here, both systems possess asymptotically mean-field
critical behavior.

In addition to the above exact determinations of dimen-
sional crossover, a field-theoretically motivated approach
has been formulated based on the notion of an “envi-
ronmentally friendly” renormalization group [9,10]. This
approach yields explicit (and relatively simple) crossover
functions for thermodynamic quantities. While the func-
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tions are necessarily approximate, they are consistent with
the key expectations that arise from finite-size scaling. Un-
fortunately, existing literature provides no simple way to
improve the crossover functions that arise from the envi-
ronmentally friendly renormalization group, so as to pro-
duce predictions that can be profitably compared with
experimental data.

We have developed an approach that holds the promise
of producing just such an improvement. This approach
is based on a reformulation of the partition function of a
lattice based system with a continuous order parameter in
terms of transfer matrices which allows for the calculation
of the partition function either with the use of field-
theoretic techniques or with the use of calculational
devices that have been formulated to speed the numerical
evaluation of quantum mechanical Hamiltonians in one
dimension, a problem that is mathematically equivalent to
the calculation of transfer matrices in two dimensions.

We start with the Ginzburg-Landau-Wilson effective
Hamiltonian of an O�1� system on a lattice in three di-
mensions. If si is the value of the continuous spin variable
at the ith lattice site, then this effective Hamiltonian has
the form
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The first sum in Eq. (1) is over nearest neighbor pairs.
High order perturbation theory coupled with the renormal-
ization group has been shown to yield very accurate results
for the three-dimensional critical behavior of the system
described by the effective Hamiltonian (1).

In two dimensions, the Ising model, which is based on
fixed length spins, has been successfully investigated with
the use of a variety of techniques. An important subset of
the approaches is based on an analysis of the transfer ma-
trix coupling the state in 2N -dimensional space of a col-
umn of spins to the state of a neighboring spin column
[11]. Onsager’s exact solution [12] for the Ising model
partition function consisted of the extraction of the largest
eigenvalue of this transfer matrix. In the absence of tech-
niques leading to exact solutions, one has recourse to other
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methods for the determination of the largest eigenvalue
of a two-dimensional transfer matrix. In particular, there
is a set of approaches developed to perform highly accu-
rate numerical evaluation of the low-lying eigenvalues of
the Hamiltonian of a one-dimensional quantum mechani-
cal system. The generic term for this collection of calcula-
tional devices is the density matrix renormalization group
(DMRG) [13,14]. There are cases in which the extremely
high accuracy of this method has led to important results.

In the context of statistical mechanics, the DMRG has an
analog in the form of the transfer matrix renormalization
group (TMRG) [15]. The TMRG has been shown to lead
to excellent results for the thermodynamic functions of the
two-dimensional Ising model [15], the Q-state Potts model
[16,17], and confinement effects in the presence of gravity
[18,19].

We have been able to demonstrate that this method can
be applied to the evaluation of the partition function for
the continuous-spin effective Hamiltonian (1). We start
with the one-dimensional version of the Ginzburg-Landau-
Wilson partition functionZ Y
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This partition function can also be written as the inner
product of a sequence of transfer matrices T �si , si11�,
where
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Eigenfunctions, ck�s�, of this transfer matrix are defined
by the equationZ

ds0 T �s, s0�ck�s0� � lkck�s� . (4)

We list the eigenvalues in order of magnitude. The largest
eigenvalue is l0, the next largest l1, and so on. Given that
the transfer matrix is real and symmetric, the eigenfunc-
tions can also be written as real, normalized, and orthogo-
nal, in that Z `

2`

ck�s�cl�s� ds � dk,l . (5)

The one-dimensional transfer matrix is then written as

T�s, s0� �
X
k

ck�s�lkck�s0� . (6)

Given the orthonormality of the eigenfunctions, the one-
dimensional partition function has the form
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X
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k ck�s0� (7)
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and is thus dominated by the contribution associated with
the largest eigenvalue, l0, of the transfer matrix.

Now, the d-dimensional Ising model can be written in
terms of the eigenfunctions and eigenvalues of the one-
dimensional Ising model by associating neighboring pairs
of spin variables in terms of a “bond” transfer matrix,
Tb�si , sj�, having the form
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The partition function is then a sum over bond indices, k,
while vertices contain integrations over the spin variable s
of combinations of transfer matrix eigenfunctions:Z `

2`

√
2dY

l�1

ckl �s�

!
ds . (9)

While the eigenfunctions, ck�s�, are orthonormal, there is
no reason to believe that this leads to significant restrictions
over the allowed indices in the integration of a product of
2d of the ck’s when d . 2. One important simplification
arises from the fact that a ck�s� is either even or odd in the
spin variable s. In fact, the largest eigenvalue is associated
with an even-parity eigenfunction and the next largest with
an odd-parity eigenfunction.

The partition function of the two-dimensional
continuous-spin variable version of the O�1� model
was calculated with the use of the formulation above in
terms of transfer matrix eigenfunctions, the basis set being
truncated at the eigenfunctions having the largest few
eigenvalues. The fourth order coupling constant, u, in (1)
was chosen to be equal to 0.23, guided by a best fit be-
tween the Ginzburg-Landau-Wilson effective Hamiltonian
and order parameter distributions in three dimensions as
obtained by simulation [20]. These eigenfunctions were
used to construct the basis set of the two-dimensional
transfer matrix connecting one row of continuous spins to
the next. This two-dimensional transfer matrix was then
reduced with the use of an adaptation of the TMRG. The
free energy is extracted from the largest eigenvalue of
the transfer matrix via the connection F � 2kBT lnl0.
Because we are interested in the behavior of the partition
function in the immediate vicinity of the critical point,
temperature-dependent factors multiplying the log of the
largest eigenvalue are set equal to a constant.

This version of the free energy leads immediately to the
specific heat through differentiation with respect to the
“bare” reduced temperature, r. It is also possible to intro-
duce a symmetry-breaking field, h, appearing in the effec-
tive Hamiltonian through the term 2

P
i hsi . The remanent

magnetization and the isothermal susceptibility can be
calculated from the free energy by taking, respectively,
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FIG. 1. The spontaneous magnetization (calculated as the ex-
pectation value in the state jC0�) as a function of rc 2 r .

first and second derivatives with respect to the symmetry-
breaking field.

The spontaneous magnetization of the system can be
calculated from the spin operator s2,

M � �C0js2jC0� , (10)

where C0 is the eigenfunction of the transfer matrix with
the largest eigenvalue and the spin operator s2 is the Ising
spin operator. We plot the value of (10) on a log-log grid to
illuminate the power-law behavior (see Fig. 1). The value
of the critical exponent b is calculated to be 0.1229 6
0.0006, which is consistent with the exact value for the
d � 2 Ising model of 1�8 [11].

Differentiating the free energy twice with respect to the
reduced temperature r, we obtain the specific heat. We
display our results for this quantity as a function of r in
Fig. 2. Further analysis of these data reveal a logarithmic
dependency both above and below the critical temperature;
in other words, a � a0 � 0, as expected from the Ising
model.

We have also examined the ratio of specific heat ampli-
tudes A1�A2 where we fit to the function

C6 � A6 lnjr 2 rcj 1 B6 . (11)

For an O�1� system in two dimensions, this value is ex-
pected to be unity. The value calculated from the data is
0.94.

As mentioned in the previous section, by adding a
symmetry-breaking term 2

P
i hsi, we are able to take

derivatives with respect to h to obtain the spontaneous
magnetization (independently from the �C0js2jC0�
method) and the magnetic susceptibility xT . Determi-
nation of the magnetization using this approach gives
b � 0.1230 6 0.0009.
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FIG. 2. The specific heat as a function of r .

The calculation of xT requires special consideration as
it is dependent on the size of the “grid” Dh used for
the numerical differentiation. Best results for the criti-
cal exponent above and below the critical temperature are
g � 1.74 6 0.01 and g0 � 1.33 6 0.03. The exponents
do appear to converge to the expected value of 7�4 as the
grid size dh is reduced (see Fig. 3).

Finally we comment on the validity of the assumption
that the retention of a small number of states in the eigen-
function expansion of the transfer matrix (6) suffices to
ensure an accurate calculation of critical point properties.
The previous results were obtained by using only two states
in the expansion (6); i.e., ns � 2. To empirically investi-
gate the inclusion of more states, the calculation of the
specific heat was repeated with ns � 4. The results are
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FIG. 3. The susceptibility exponent g above and below the
critical temperature as a function of the grid spacing dh. The
horizontal line denotes the 2D Ising exponent of g � 1.75.
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FIG. 4. The free energy of a chain with a single enhanced
bond as a function of ns (i.e., the number of states kept in the
expansion of the Ginzburg-Landau transfer matrix). The inset
shows the detail of ns � 4 and higher.

effectively the same within error bounds—a � a0 � 0
and the amplitude ratio is 0.95. We also derive the spon-
taneous magnetization exponent b while retaining ns � 4
states. In this calculation we use the method of introducing
a symmetry-breaking field h and take a derivative of the
free energy with respect to it. We find b � 0.124610.0051

20.0075.
There is another perspective from which to explore the

effect of truncating the Ginzburg-Landau basis. The lowest
order effect of including higher states can be realized by
allowing a single bond in the lattice to be represented by
the full sum of states in the expansion. We refer to this as
an “enhanced” bond. All other bonds are expanded on only
the first two (ns � 2) eigenstates. We can then observe the
effect of this enhancement on the free energy density as we
057203-4
increase ns. Examining Fig. 4 it is clear that the effect of
enhancement is negligible above ns � 4.
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