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The response to a local strong nonmagnetic impurity in the pseudogap phase is examined in two dis-
tinctly different scenarios: phase fluctuation (PF) of pairing field and d-density-wave (DDW) order. In
the PF scenario, the resonance state is generally double peaked near the Fermi level, and is abruptly broad-
ened by vortex fluctuations slightly above the transition temperature. In the DDW scenario, the resonance
is single peaked and remains sharp up to gradual intrinsic thermal broadening, and the resonance energy
is analytically determined to be at minus of the chemical potential.
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Aside from others [1], two distinctly different scenarios
are proposed for the pseudogap in cuprates [2], depend-
ing on whether the pseudogap phase is independent of the
pairing gap. In the phase-fluctuation (PF) scenario [3], it is
speculated that the normal state contains preformed Cooper
pairs, and the phase fluctuation of the pairing field destroys
superconductivity. As the pairing gap has a d-wave sym-
metry in the internal momentum space, the d-wave-like
dispersion of the pseudogap [4] follows immediately. An
advantage of this scenario is that it involves no symme-
try breaking, and is adiabatically connected to the para-
magnetic Mott insulator. Such a normal state is not a
Fermi liquid. In the second scenario, the normal state is
free of pairing instability, but is in a symmetry-breaking
d-density-wave (DDW) state [5]. The latter is an ordered
state of staggered orbital current, and was discussed in
other contexts already in the early stage of high-Tc physics
[6]. It creates four holelike Fermi pockets in the nodal di-
rections. The volume enclosed by the Fermi pockets scales
exactly as the doping level x. Thus the pseudogap is from
the band structure effect. The normal state is a Fermi liq-
uid, namely, a DDW metal.

In this Letter, we discuss the resonance state due to
a strong nonmagnetic local impurity in the pseudogap
phase, which turns out to be markedly different in these
scenarios. In the PF scenario, it is two peaked near the
Fermi level, broadened by the vortex fluctuations (in ad-
dition to the intrinsic thermal broadening), and is thus
strongly temperature dependent near the superconducting
transition temperature Tc. (This is a complementary result
to the extended impurity one [7].) In contrast, we ana-
lytically verify that the resonance state is single peaked,
remaining sharp and pinned at minus of the chemical po-
tential in the DDW metal [8], and identify the underlying
mechanism for the pinning effect. We propose to measure
the temperature and doping dependence of the impurity
state by, e.g., scanning tunneling microscopy [9], in order
to tell the mechanism of the pseudogap (or whether the
normal state is a Fermi liquid).
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In a d-wave superconductor, a local strong impurity is
known to give rise to a resonant state near the Fermi level
[10]. The state is almost real as the scattering rate into the
continuum is limited by the vanishing density of states near
the Fermi level (in an unperturbed system) because of the
d-wave pairing symmetry. Qualitatively similar resonant
states are found numerically in a d-wave superconductor
with DDW order [8]. This is because (1) the resonant
impurity state near the Fermi level is a generic feature
of d-wave pairing, and (2) the only significant effect of
DDW is to generate a specific band structure, on top of
which d-wave pairing occurs.

Returning to the normal state, it is natural to expect
qualitatively different responses to local impurities in the
PF and DDW scenarios, since in the DDW normal state no
pairing occurs. An earlier attempt to address the resonance
in the pseudogap phase was made in Ref. [11], but with
only limited success for PF. Recently the extended impu-
rity was discussed in the PF scenario [7], and a numerical
study was performed for a local impurity in the DDW sce-
nario [8]. In this Letter, we compare the behaviors of the
same local impurity in both PF and DDW scenarios.

Phase-fluctuation scenario.—The effective mean field
Hamiltonian in a square lattice for a d-wave supercon-
ductor may be written as H �

P
�ij��C

y
i hijCj 1 H.c.� 2

m
P

i C
y
i s3Ci, where Ci � �fi", f

y
i#�T is the Nambu

spinor, m is the chemical potential, s3 is the third Pauli
matrix, and

hij � 2ts3 1

∑
0 Dij

D
�
ij 0

∏
,

with Dij � D0hij exp�iwij �, where D0 is the pairing am-
plitude, hij � 1 �21� for x direction (y direction) bonds,
and wij is the phase. In the PF scenario, the pairing field
is disordered by thermal and/or quantum fluctuations of
vortices at zero applied magnetic field. In the follow-
ing discussion we assume that the vortex fluctuations are
thermal.
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It is possible to make a singular gauge transform
Ci ! e2ifis3�2Ci so that Dij ! D0hij no longer carries
the phase, whose effect migrates to the hopping part in hij :
2ts3 ! 2ts3ei�fi2fj�s3�2. In the continuum limit, the
phase difference between neighboring sites translates
to the phase gradient 2qs � e2if =

i eif, and corresponds
to the superfluid velocity. It varies at the length scale of
the London penetration depth, being much larger than
the Fermi wavelength. Thus it is valid to adopt the
quasiclassical approximation, in which Fermions see a
microscopically constant qs, while qs itself varies macro-
scopically. In this sense, the (matrix) Greens function G0
for the C Fermions influenced by qs is determined by, in
momentum space,

G21
0 �k, ivn; qs� �

∑
ivn 2 ´k1qs Dk

Dk ivn 1 ´k2qs

∏

� �ivn 2 qs ? vk�s0 2 ´ks3 1 Dks1 .
(1)

Here ´k � 22t�coskx 1 cosky� 2 m, Dk �
2D0�coskx 2 cosky�, vk � =k´k. As is well known, the
low energy excitations in this system are located around
the four nodes kn�1,2,3,4 � �6K, 6K� in the momentum
space, with 24t cosK � m. The second line in Eq. (1) is
the usual Doppler approximation [12]. At low energies,
the Doppler shift qs ? vk can be well approximated by its
value at the four nodes Dn � qs ? vkn . We shall use the
first (second) line of Eq. (1) for numerical (qualitative and
analytical) discussion [13].

The real space Greens function is obtained
by the Fourier transform, G0�i, j, ivn ; qs� �P

k G0�k, ivn; qs� exp�ik ? �ri 2 rj�	. Of special in-
terest is the local Greens function g�ivn; qs� � G0�i �
j, ivn; qs�. Because of the d-wave pairing symmetry,
g12 � g21 � 0. (We suppress the arguments if appli-
cable). On the other hand,

g11�ivn; qs� � 2g�
22 �

Z
dE N0�E;qs���ivn 2 E� ,

(2)

N0�E; qs�� �1�8�
4X

n�1

X
n�6

�jE 2 nDnj��8ptD0�

2 m�E 2 nDn�2 sgn�E 2 nDn��L4	 , (3)

with L � 4�pt3D
3
0��t2 1 D

2
0�	1�4. A cutoff at jEj .

Ec � min�4t, 4D0� is necessary in applying Eq. (3).
Anticipating its effect in the impurity scattering, we point
out briefly the behavior of N0: (1) It exhibits a fourfold
symmetry in the direction of qs. (2) At jEj ø Ec and
jDnj ø Ec, the leading contribution comes from the first
term in N0. It is particle-hole symmetric around E � 0 at
any m and qs. This is the fundamental property of d-wave
pairing between time-reversed particles. (3) Away from
half filling �m fi 0�, there is a slight asymmetry. To the
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first order in m, this is included in the second term in
N0. Clearly, N0�E � 0; qs� ~ qs, as first pointed out by
Volovik [12].

In the presence of a local scattering potential at site
i � 0, the corresponding Greens function G can be ob-
tained within the T-matrix approximation (which is exact
if the impurity does not spoil the pairing field),

G�i, j, ivn; qs� � G0�i, j, ivn ; qs�
1 G0�i, 0, ivn; qs�T�ivn; qs�
3 G0�0, j, ivn; qs� , (4)

T21�ivn; qs� � 1��Vs3 1 Vms0� 2 g�ivn; qs� , (5)

where V �Vm� is the nonmagnetic (magnetic) scattering
strength. To simplify our discussion, we shall consider
nonmagnetic scattering only. With the impurity, the local
density of states (LDOS) is site dependent. At site i it is
given by

N�i, v; qs� � 2�1�p� ImG11�i, i,v 1 i01; qs� . (6)

We emphasize that the off-diagonal elements of G0 in
Eq. (4) contribute to the density of states. Conceptually,
neglecting such contributions, as in Ref. [11], the theory
would be hardly related to pairing.

Let us discuss the qualitative behavior of the LDOS in
our case. Since g is diagonal, so is the T matrix. After
analytical continuation ivn ! v 1 i01, the resonance in
LDOS is determined by Re�T21

11 � � 0 or Re�T21
22 � � 0.

This is equivalent to Re�g11�6v 1 i01; qs�	 � V21, and
immediately implies two resonance peaks in a general
situation, an essential feature of pairing. For a strong scat-
ter, V21 ! 0. In the case of qs � 0, a sharp resonance
exists in the LDOS at the sites nearest to the impurity [10].
The behavior at qs fi 0 is as follows: (1) For m � 0 and
V 21 � 0, we have perfect particle-hole symmetry, so that
Re�g11�i01; qs�	 � 0 from Eq. (2). The resonance is at
v � 0. However, it is not sharp, and its width scales with
N�0; qs� �~ qs� in accordance with the Fermi golden rule.
(2) The effect of a finite m and/or V 21 is to generate a
slight asymmetry, and thus splits the resonance into two
peaks, situated on either side of the Fermi level. Their
widths are identical (different) if m � 0 �m fi 0� because
of the behavior of N0. Moreover, at large enough qs the
splitting will be smeared due to the broadening of both
peaks.

Before we proceed, we predict from the above results
that even below Tc the resonance may be broadened by an
in-plane transport current and/or a nearby static vortex.
Since N0 is fourfold symmetric in the direction of the
relevant supercurrent, so is the broadening phenomenon.

Thermal phase fluctuations are governed by the
Kosterlitz-Thouless (KT) theory [14]. In the quasiclas-
sical approximation, this just amounts to an average
over qs. For illustrative purposes, one can assume a
Gaussian distribution exp�2q2

s�2ny��2pny for qs, with
057002-2
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ny scaling with the density of free vortices (antivortices)
[7]. The average LDOS is thus N�i, v� � �N�i, v; qs��.
The averaging makes it inconvenient to determine the
resonance exactly, since it is the Greens function that
should be averaged instead of the T matrix alone. How-
ever, qualitative features of the resonance in the LDOS
are roughly the same as discussed above, but with a
characteristic scale of qs given by

p
ny , the inverse vortex

spacing.
All of the above predictions are indeed seen in our

numerical results. We use Eqs. (1) (the first line) and
Eqs. (4)–(6), and average over qs. In Figs. 1 we present
results for D0 � 0.17t, m � 20.3t, and V � 100t. (The
results do not change much in the unitary limit V ¿ t.)
Figure 1(a) plots the LDOS at rnn nearest to the impu-
rity as a function of energy. For ny # 1026 (or vor-
tex spacing dy $ 103 in units of crystal lattice constant
a0), the resonance is sharp and indistinguishable from
that with no vortices at all. However, it begins to de-
grade at ny $ 1024 �dy # 102a0�, and becomes almost
featureless at ny � 5 3 1023 �dy � 14a0�. Translating
to the temperature dependence using the KT expression
ny � exp�2

p
aTc��T 2 Tc� 	 (with a � 5 for estimation)

one expects no significant change of the resonance at
T 2 Tc , 0.07Tc, but it is suddenly degraded as soon as
T 2 Tc . 0.1Tc. For Tc � 40 K as in a typical under-
doped cuprate, the temperature window for this phenome-
non to happen is within 4 K. While the exact number
should not be taken seriously, the sudden degrading of
the resonant impurity state is a robust and peculiar fea-
ture of the PF scenario. A similar case was found for
an extended impurity elsewhere [7]. The dotted line in
Fig. 1(a) is the DOS at ny � 0 and V � 0 for compari-
son. It also shows the slight doping-induced particle-hole
asymmetry. Figure 1(b) shows the spatial distribution of
LDOS at v � 0.05t �ø jmj�, one of the resonance en-
ergies, when ny � 0 [10], which should be compared to
Fig. 1(c) at ny � 5 3 1023, upon which the contrast for
the fourfold structure is much weaker.

DDW scenario.—We assume that the effective Hamil-
tonian for the uniform DDW metal is [5]
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FIG. 1. Results with D0 � 0.17t, m � 20.3t, and V � 100t.
(a) N�rnn , v� versus v. Solid lines: ny � 0 � 1026, 1024,
1023, and 5 3 1023 with decreasing peaks. The dotted line is
the LDOS at ny � 0 and V � 0 for comparison. (b) N�r, 0.05t�
at ny � 0. The impurity is at the center. (c) The same as (b)
for ny � 5 3 1023. The gray scale is the same in (b) and (c).
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H � 2
X
�ij�

��t 1 iDij�cy
i cj 1 H.c.	 2

X
i

mc
y
i ci , (7)

where spin index is suppressed, Dij � D0hij�21�i , with
D0 being the DDW order parameter.

It proves useful to introduce two sublattices A and B,
and denote ci[A � Ai and ci[B � Bi. The real-space
sublattice Greens function is"

G
�0�
AA G

�0�
AB

G
�0�
BA G

�0�
BB

#
�

1
2

X
k,n�6

Akn exp�ik ? rij�
ivn 1 m 2 nEk

, (8)

where Akn � s0 1 ns1Xk�Ek 1 ns2Dk�Ek, Ek �q
X2

k 1 D2
k, Xk � 2t�coskx 1 cosky�, and Dk �

2D0�coskx 2 cosky�. Note that the summation over the
momentum space is limited to the reduced Brillouin zone.
In order to study the impurity problem, we need the
real-space Greens function G

�0�
c �i, j, ivn� in terms of the

original c electrons. This is related to the above as

G�0�
c �i [ a, j [ b, ivn� � G

�0�
ab�i, j, ivn� , (9)

where a, b � A, B.
The unperturbed on-site Greens function is inde-

pendent of sublattices, gc�ivn� � G
�0�
c �0, 0, ivn� �R

dE N0�E���ivn 2 E� with N0�E� �
P

kn�6 d�E 2

nEk 1 m� � jE 1 mj��8pDt� being the unperturbed
DOS. The second equality in N0 requires a cutoff at
jE 1 mj . Ec � min�4D, 4t�. The symmetry around
E � 2m in N0, instead of at E � 0 in the case of pairing,
is exact in our model. This is because doping the system
does not change the two symmetric bands generated by
DDW, but just shift the Fermi level.

Now, the Greens function in the presence of the impurity
can again be obtained within the T-matrix formulation,

Gc�i, j, ivn� � G�0�
c �i, j, ivn�

1 G�0�
c �i, 0, ivn �T�ivn�G�0�

c �0, j, ivn� ,
(10)

T21�ivn� � V 21 2 gc�ivn� . (11)

The resonance state is defined by Re�T21�v 1 i01�	 �
0, or equivalently Re�gc�v 1 i01�	 � V21. Using the
approximate N0, gc�v 1 i01� is given by

2sgn�v 1 m�N0�v� ln

∑
E2

c

�v 1 m�2
2 1

∏
2 ipN0�v� .

(12)

Thus the resonance occurs below (above) 2m for a finite
positive (negative) potential V . For a nonmagnetic impu-
rity, it is single peaked because of the unique condition
for the resonance to occur. Again the energy width of the
resonance scales with N0. In the unitary limit V 21 ! 0,
the resonance energy is v � 2m from the above expres-
sion of gc and N0�2m� � 0. In fact, this result is exact
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FIG. 2. Results with D0 � 0.17t and m � 20.3t. (a) N�rnn , v�
versus v. (b) N�r, v � 2m� versus r.

since the exact symmetry in N0 mentioned above guaran-
tees Re�gc�2m 1 i01�	 � 0. This resonance energy is
exactly at the midpoint of the two symmetric bands, in
much the same way as the midgap state exists in a semi-
conductor. Furthermore it would be infinitely sharp since
N0�2m� � 0.

The DDW order should not fluctuate significantly once it
is well developed, because it is an Ising-like order parame-
ter so that no Goldstone mode exists. Therefore the ther-
mal rounding of the resonance is gradual, with no abrupt
change just above Tc, in contrast to the case in the PF
scenario.

The LDOS N�i, v� can be easily calculated from
Eq. (10). In Fig. 2(a) we present the LDOS at rnn nearest
to the impurity. The resonance is single peaked and robust
as long as V ¿ t, D. In Fig. 2(b) we present the spatial
dependence of the LDOS at the resonance energy. The
pattern is also fourfold symmetric, similar to the case of a
d-wave superconductor except that the resonance here is
at 2m instead of at zero energy.
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Note added.—After the submission of this Letter, we
became aware of a related but independent work [15].
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