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Stability of Metal Vicinal Surfaces Revisited
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The stability of metal vicinal surfaces with respect to faceting is investigated using empirical potentials
as well as electronic structure calculations. It is proven that for a wide class of empirical potentials all
vicinal surfaces between (100) and (111) are unstable at 0 K when the role of third and farther nearest
neighbors is negligible. However, electronic structure calculations reveal that the answer concerning the
stability of vicinal surfaces is not so clear-cut. Finally, it is shown that surface vibrations at finite tempera-
tures have little effect on the stability of vicinal surfaces.
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The study of energetics of vicinal surfaces is of prime
interest for the understanding of various surface processes
such as crystal growth, surface morphology, or roughening
transition. Recently Frenken and Stoltze [1] raised the
important question of the stability of vicinal surfaces in
metals. Using a potential based on the effective medium
theory (EMT), they predicted that most vicinal surfaces
are unstable relative to faceting at 0 K and claimed that
the observed stability at room temperature arises from the
entropic contribution due to thermal vibrations. In this
Letter, we show that the first prediction results entirely
from the analytical form and range of interactions of the
potential used and that the same conclusion holds for a
wide class of empirical potentials. This is in contradiction
with calculations based on an explicit determination of
the electronic structure which reveals a variety of other
behaviors for vicinal surfaces at 0 K. Finally, we show that
the vibrational free energy contribution has, most often, a
negligible role when calculated correctly.

Let us consider two (low-index) surfaces and denote
n1, g1 and n2, g2 their normal vector and surface energy
(per unit area), respectively, and u2 the angle �n1, n2�. Let
us also consider a (high-index) surface of surface energy
g and normal n belonging to the plane defined by n1, n2
and making an angle u with n1 �0 , u , u2�.

An area S of this high-index surface will transform into
facets of normal n1 (area S1) and normal n2 (area S2) while
keeping its average orientation (Fig. 1) when [2]

gS . g1S1 1 g2S2 , (1)

with the constraints S � S1 cosu 1 S2 cos�u2 2 u� and
S1 sinu � S2 sin�u2 2 u�. It is easy to show that the
faceting condition (1) is

f�h� . �1 2 h�h2�f�0� 1 �h�h2�f�h2� , (2)

with h � tanu and f�h� � g� cosu. This simply means
that the point [h, f�h�] must be above the straight line
joining the points [0, f�0�] and [h2, f�h2�].
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We study here in detail the case of the p�100� 3 �111�
or �2p 2 1, 1, 1� and p�111� 3 �100� or �p 1 1, p 2 1,
p 2 1� vicinal surfaces and their stability with respect to
faceting. These surfaces have close-packed step edges, p
atomic rows parallel to the step edge (including the inner
edge) in each terrace, and make an angle u with the (100)
surface. The domain 0 , h # hc �hc �

p
2�3� corre-

sponds to (100) vicinal surfaces with p decreasing from
infinity to 2 [(311) surface]. The domain hc # h , h2
�h2 �

p
2 � is that of (111) vicinal surfaces with p in-

creasing from 2 [(311) surface] to infinity [(111) surface)].
Thus the (311) surface can be regarded either as a (111) or
a (100) vicinal surface with the highest step density.

As already stated in Ref. [1], f�h� falls almost ex-
actly on the straight line joining the points �0, f�0�� and
�
p

2, f�
p

2 ��. However, there is a small, yet significant, de-
viation Df�h� from this linear behavior and, from Eq. (2),
its sign for any intermediate surface determines the sta-
bility of this surface with respect to faceting into (100)
and (111) facets: If Df�h� . 0�,0� the vicinal surface
is unstable (stable). As noted above, Df�h� for the (311)
surface plays a special role and is given by

Df311 � �ES�311� 2 ES�100� 2 ES�111���S311
0 , (3)

where ES�hkl� is the surface energy per surface atom of
the �hkl� surface, and S311

0 is the area of the projection of
the unit cell of the (311) surface on the (100) plane.

In order to distinguish between different energetic con-
tributions, we will first consider a rigid lattice (i.e., with-
out atomic relaxation) at 0 K and calculate the energy with
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FIG. 1. Faceting.
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usual empirical potentials analyzing the effects of the range
of interactions and of relaxation. We will also present
results from a realistic tight-binding model showing the
influence of electronic effects. Finally, the temperature
dependence of Df�h� will be included with a particular
focus on the phonon free energy contribution.

Empirical potentials belonging to a large class can be
written as a sum of contributions Ei �Ei , 0� of each atom
i, i.e.,

E �
X

i

Ei �
X

i

(X
jfii

W�Rij � 1 F

"X
jfii

g�Rij�

#)
. (4)

In the following we set ri �
P

jfii g�Rij�. The first term
of Eq. (4) is pairwise while the second one (in which g is
a positive function) has an N-body character. The func-
tions W and g of the interatomic distance Rij are usually
cut off smoothly after a given radius Rc. Pair potentials
[F�ri� � 0], second moment potentials [F�ri� ~

p
ri ]

[3], as well as embedded atom model [4] and EMT po-
tentials [5] belong to this class.

We first fix the interatomic distances to their bulk equi-
librium values; i.e., atomic relaxation effects are ignored.
With this assumption

P
jfii W�Rij� and

P
jfii g�Rij� are lin-

ear combinations of the number of neighbors Zi
S of atom
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i in the Sth coordination sphere of radius RS�RS , Rc�
and Ei � E�Zi

1, . . . , Zi
S , . . .�. It is usual to take R1 as the

reference distance and set g�R1� � 1.
When the range of the potential is restricted to the first

and second neighbors only, it can be shown [6] that the step
energies (per step atom) E

�100�3�111�
step �p� and E

�111�3�100�
step �p�

do not depend on p; i.e., there is no interaction between
steps even when p � 2. Then it can be proven that the
curve Df�h� is made of two straight lines, the slopes of
which are a function of the corresponding step energy and
of g�100� and g�111�. These two lines meet at the inter-
mediate point �

p
2�3, Df311� and the sign of Df311 deter-

mines the stability of the vicinal surfaces. A counting of
coordination numbers leads to

Dfhkl � �E�7, 3� 1 E�10, 5� 2 E�8, 5� 2 E�9, 3���Shkl
0 ,
(5)

in which the first two terms refer to the outer and the inner
step edges, respectively, and the last two terms to a (100)
and (111) surface atom. Shkl

0 is the projected area of the
�hkl� surface unit cell on the (100) surface. In the case of a
pair potential Dfhkl is strictly equal to 0 so that the energy
of any vicinal surface is equal to the energy of the faceted
(100)–(111) surface. Thus, when the potential includes an
N -body contribution, Dfhkl can be written
Dfhkl � ��F�7 1 3g2� 2 F�9 1 3g2�� 2 �F�8 1 5g2� 2 F�10 1 5g2����Shkl
0 , (6)
with g2 � g�R2�. For all the existing potentials of the
form (4) F 00�r� � d2F�dr2 is positive. As a conse-
quence, F�r 2 2� 2 F�r� is a decreasing function of r

and therefore Dfhkl is always positive and in particular
Df311. This common property of this class of potentials
has a clear physical origin: The energy Ei of an atom i
should decrease more and more slowly when its coordina-
tion increases towards the bulk coordination [7]. It clearly
implies that F 00�r� must be positive. We have then proven
that for any empirical potential of the general form (4)
on a rigid lattice at 0 K and a cutoff radius Rc , R3,
any vicinal surface from (100) to (111) is unstable with
respect to faceting. As an example, we show in Fig. 2
the result of a calculation for Cu with a potential denoted
P2 in which W�Rij � � A�R1�Rij�p, F�ri� � 2jr

2�3
i , and

g�Rij � � exp�22q�Rij�R1 2 1��.
When the range of the potential is extended to further

neighbors �Rc $ R3� this result is no longer valid. First,
for a general potential, steps with narrow terraces start to
interact and the curve Df�h� is no longer made of two
straight lines. The pair potential does not contribute to
this interaction at least when Rc , R5 but it gives a con-
tribution 24W�R3��S311

0 to Df311 which tends to destabi-
lize (stabilize) the vicinal surfaces when W �R3� is negative
(positive). Moreover, additional terms due to other sites
appear in Eqs. (5) and (6), and therefore the sign of the
contribution of the N-body function F to Df311 cannot be
inferred since it depends on the magnitude of g3, g4, . . . .
This is shown in Fig. 2 in which Df�h�, obtained with a
potential P4 of the same functional form as P2 but with
R4 , Rc , R5, is drawn. In this potential the role played
by third and fourth neighbors is sufficient to reverse the
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FIG. 2. Df�h� for Cu from empirical potential calculations up
to second and fourth neighbors, with and without relaxations.
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sign of Df311. Thus, the range of the potential may play a
crucial role on the stability of vicinal surfaces.

Furthermore, the potentials discussed above have a com-
mon drawback: The energy of an atom i is completely
fixed by its coordination numbers Zi

S whereas it should
also depend on the angular disposition of its neighbors.
This effect is accounted for in electronic structure calcu-
lations which, moreover, include long range interactions
(often oscillatory). These interactions, although small,
may play a role in the very delicate energy balance which
determines the stability of vicinal surfaces. In a recent
paper [8], we calculated the step energies of various vici-
nal surfaces from a realistic tight-binding model for Rh,
Pd, and Cu. The functions Df�h� derived from the results
of this paper are plotted in Fig. 3 for the (100) and (111)
vicinal surfaces.

As can be seen there is a great variety of shapes. For
Cu the curve is below the straight line and the vicinal sur-
faces are stable at 0 K while for Pd they are unstable. For
Rh all vicinal surfaces are stable with respect to faceting
into (100) and (111) surfaces. However, the curve presents
two local minima at h �

p
2�5 [(511) surface] and h �

3
p

2�5 [(533) surface] with a local maximum at h �
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FIG. 3. Df�h� for Rh, Pd, and Cu from tight-binding [8] and
Korringa, Kohn, and Rostoker (KKR) [9] calculations.
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p
2�3 [(311) surface]. This means that the vicinal surfaces

of orientation such that
p

2�5 , h , 3
p

2�5 are unstable
relative to faceting into (511) and (533) orientations. This
peculiar behavior is related to electronic step-step interac-
tions which are repulsive for the (311) and (211) surfaces
and attractive for (511) and (533) surfaces [8]. We have
also plotted points deduced from Eq. (3) using the ab ini-
tio calculations of Galanakis et al. [9] on the three surfaces
(111), (100), and (311) of Cu, Pd, and Rh. For Rh and Pd
the ab initio calculations are in qualitative agreement with
our results but for Cu they predict at least an unstable range
of orientations.

Until now we have neglected the effect of atomic re-
laxations. Relaxation leads to a decrease of the surface
energies by a few percents (up to 10%) and one could
wonder if, in view of the small value of Df�h�, it could
change the results obtained on the rigid lattice. However,
it must be kept in mind that the stability depends on energy
differences [Eq. (3)]. Thus, some kind of cancellation is
expected. Actually, we have performed a full energy mini-
mization using the potentials P2 and P4 and, in both cases
(Fig. 2) it acts in favor of the stabilization since the re-
laxation is larger on a vicinal surface than on a flat one.
Nevertheless, this effect is not large enough to modify the
stability (or instability) of a surface, and the results ob-
tained on the rigid lattice remain qualitatively valid except
when Df�h� is positive but very small. Besides the low-
ering of Df�h�, relaxation effects modify its shape. In
particular, when using the potential P2, the curves join-
ing, on the one hand, the (100) and (311) points and, on
the other hand, the (311) and (111) points are no longer
straight lines but get a positive curvature due to the repul-
sive elastic step-step interactions.

The above study sheds light on the results of Frenken
and Stoltze [1] at 0 K. These authors have calculated
Df�h� for the fully relaxed (100) and (111) vicinal sur-
faces of Ag using an EMT potential with R3 , Rc , R4
[10] but in which the role played by third neighbors is
very small compared to that of first and second neighbors
as well in the pair as in the N-body part of the potential (to
fix ideas, g1 � 1, g2 � 3 3 1022, g3 � 3 3 1023). Our
analysis shows that all the Df�h� curves calculated with
a potential of type (4) and a cutoff radius Rc , R3 will
behave identically: This explains the strong similarity
between our results on relaxed Cu with potential P2 and
those of Frenken and Stoltze for Ag. Therefore the insta-
bility of vicinal surfaces at 0 K is an unavoidable conse-
quence of the type of potentials and range of interactions
used in Ref. [1]. However, these potentials may be not
accurate enough. Indeed, electronic structure calculations
predict other possible behaviors at 0 K. Vicinal surfaces
can be stable or unstable relative to faceting into (100) and
(111) facets or they can also present a faceting into other
high index surfaces.

Let us now consider the influence of a finite tempera-
ture. Df�h� varies with temperature due to the excess
056104-3
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FIG. 4. Dfvib�h� for Cu from potential P2.

vibrational free energy and to the entropy gained by the
meandering of steps. As stated in Ref. [1], the meandering
entropy has a stabilizing effect but it is negligible at room
temperature for Cu and Ag. This is a fortiori true for Rh
and Pd in which the formation energy of a kink is much
larger than in noble metals. The excess vibrational free
energy has two contributions: the internal energy which
dominates at low temperature and vanishes at high tem-
perature, and the entropy part which has the inverse behav-
ior. Indeed Eq. (5) applies to any energy, and, in particular,
to the vibrational free energy provided that the contribu-
tion of an atom i is completely determined by its numbers
of neighbors inside the first two coordination spheres, at
most. It is seen that besides the vibrational entropic energy
estimated by Frenken and Stoltze in an isotropic Einstein
model as coming from the difference between the outer
edge and a (111) surface atom, i.e., E�7, 3� 2 E�9, 3�,
another term should be considered, namely, E�10, 5� 2

E�8, 5� arising from the difference between the inner edge
and a (100) surface atom. These two terms have opposite
signs and are expected to be of the same order of mag-
nitude. Thus, the calculation of the contribution of vi-
brational free energy Dfvib�h� to Df�h� needs a precise
knowledge of the vibration spectra of the bulk metal as
well as of the flat and vicinal surfaces and should include
the internal energy part (omitted in Ref. [1]), at least at
low temperatures. We have recently shown that a potential
of type P2 is able to reproduce very accurately the experi-
mental data for the vibration spectra of the bulk Cu and
of its low- and high-index surfaces [11]. We have used
these vibration spectra to calculate Dfvib�h� as a function
of temperature (Fig. 4).

Two main conclusions can be drawn from the results:
First, the order of magnitude is approximately some tenths
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of meV�Å2; secondly, Dfvib�h� is positive. Consequently,
not only phonons have a very small effect on the stabil-
ity of vicinal surfaces but their contribution to the energy
balance tends to destabilize the vicinal surface, at least for
Cu, contrary to what is claimed in Ref. [1]. This does not
mean that the vibrational free energy is always negligible.
For instance, it will play a role in the temperature depen-
dence of the step-free energy [12] and, thus, on the thermal
roughening.

In summary, we have shown that the energy balance
which drives the stability of vicinal surfaces at 0 K is very
delicate and that the result may depend on the method used
to calculate the total energy. This means that many be-
haviors can occur, namely, stability or instability relative
to faceting into low-index as well as high-index orienta-
tions. Furthermore, the contribution of thermal vibrations
is small, and it is unlikely that it stabilizes vicinal surfaces
that are unstable at 0 K.
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