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Iterated conformal mappings are used to obtain exact multifractal spectra of the harmonic measure for
arbitrary Laplacian random walks in two dimensions. Separate spectra are found to describe scaling of
the growth measure in time, of the measure near the growth tip, and of the measure away from the growth
tip. The spectra away from the tip coincide with those of conformally invariant equilibrium systems with
arbitrary central charge c # 1, with c related to the particular walk chosen, while the scaling in time
and near the tip cannot be obtained from the equilibrium properties.
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Diffusion-limited aggregation (DLA) [1] and the dielec-
tric breakdown model (DBM) [2] are central problems in
fractal growth which still pose difficult problems. Since
the growth is controlled by a Laplacian field, the harmonic
measure on these clusters is closely connected to the dy-
namics. Quantitative characterization of the measure is
provided by the multifractal exponents [3].

There are unfortunately only a few exact results for these
exponents. The Makarov scaling law [4] is true for any
simply connected curve, and the electrostatic scaling law
[5] is exact for the DBM. In an important recent advance,
exact exponents were found for systems that may be de-
scribed by using conformal field theory (CFT) [6]; a se-
ries of spectra were found, labeled by the central charge
c of the theory. This includes both equilibrium statistical
mechanics clusters, such as Ising clusters at c � 1�2, as
well as certain growth processes, such as random walks at
c � 0.

However, these exponents for growth processes describe
only the static properties of these systems. Interesting
dynamical questions, such as fluctuations about the average
growth rate, remain unanswered in the absence of exact
results. To address this, we will consider a nonequilibrium
growth process, the Laplacian random walk (LRW) [7],
and show that its static properties away from the growth
tip coincide with those of CFT clusters, but we will also
obtain nontrivial scaling near the growth tip, giving rise
to nontrivial dynamical scaling. This should shed light on
more complicated growth processes such as DLA, where
the statics and dynamics are so deeply interwoven.

The LRW is defined by a growing walk on a lattice, in
which at every stage of growth a Laplacian field is com-
puted with boundary conditions such that it vanishes on
the walk and grows logarithmically at infinity. From this
field an electric field E is computed, and the probability
of selecting any site near the tip for growth is proportional
to Eh at that site, h . 0. This can be considered as a di-
electric breakdown model in which growth occurs only at
the tip.

In this paper, we propose a model of iterated conformal
maps for the LRW. This model is not conformally invariant
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at the microscopic level, having a fixed particle size; we
then show that at large scales this model is equivalent
to another discrete model which possesses microscopic
conformal invariance. We obtain the exact multifractal
spectrum as a continuously varying function of a parameter
m, which will be indirectly connected to the h parameter
above. The h � 1 LRW corresponds to m � 1�2 or a
c � 22 CFT [8]. For other LRWs, there is a continuous
relation between m and c for exponents of the measure
away from the growth tip. While our model has the same
continuum limit as the stochastic Loewner equation [9],
we use the discreteness to obtain additional exponents for
scaling in time and measure near the growth tip.

Conformal mappings for the LRW.—We use the method
of iterated conformal mappings [10] to construct an off-
lattice LRW argued to be in the same universality class
as that defined above. In the LRW, the average growth
follows the direction of the electric field at the tip of the
walk, but with fluctuations about this preferred direction.
We will construct a model with the same features.

Let F�z� be a map from the real line to a growing walk,
with F being analytic in the upper half plane. Define
fx,l�z� to produce a bump of linear size

p
l at point x

on the real line. For example, f0,l �
p

z2 2 l. If F�x�
is the tip of the walk, then F��� fx,l�z���� maps to the walk
grown by a distance jF0�z�j

p
l in the direction of the field

at the tip. Thus we propose the following model: fix the
growth tip to be the image of z � 0. At each growth
step, first compose F�z� ! F��� f0,l�z���� to grow the walk,
where l � jF 0�0�j22l2

1 with l1 a length that determines
the size of the growth step in physical space. Then com-
pose F�z� ! F�z 6

p
l l2�l1�, where the plus or the mi-

nus sign is chosen randomly. This will shift the growth tip
by a distance l2 away from the preferred growth direction;
the greater the ratio l2�l1 the higher will be the dimension
of the random walk and so the smaller the effective h.

We wish to determine the average of the qth moment
of jF 0�z�j at a point z � x 1 iy, that is, �jF 0�z�jq�, where
the brackets denote ensemble averaging. This describes the
field as a function of cutoff in the mathematical plane, z,
which we will later convert to scaling in the physical plane.
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Denote this average after n growth steps as rn
q �x, y�. By

the chain rule we have

jF��� f�z����0jq �

µ
1 1

l

2
q

x2 2 y2

jzj4

∂

3

Ç
F 0

µ
z 2

l

2z
6

p
l l2�l1

∂Çq
, (1)

where we have used the approximation f�z� � z 2 l�
�2z�, valid at scales larger than l1.

Taking a continuum limit in the number of growth steps
gives the differential equation

≠rq�x,y�
≠n

�
l

2

µ
m≠2

x 2
x

x2 1 y2 ≠x 1
y

x2 1 y2 ≠y

1 q
x2 2 y2

�x2 1 y2�2

∂
rq�x, y� , (2)

where we have replaced the discrete translation x ! x 6p
l l2�l1 by a diffusion term with coefficient m � �l2�l1�2,

which defines the “meander” of the walk.
Recall that l � jF 0�0�j22l2

1 . However, by rescaling
dt � ldn in Eq. (2), the dependence of l on jF 0�0�j can
be removed so that we may assume l is constant. This
rescaling does not alter the steady state solution of Eq. (2).
For growth in radial geometry, the absorber radius of the
walk is et � F1, while, in a cylindrical geometry, the
height of the walk is t. Once l is held fixed, Eq. (2) is
the continuum limit of a growth process in which at each
growth step F�z� ! F��� f0,s1

�z 6 s2����, so that the fixed
cutoff in physical space is replaced by a fixed cutoff s1
in the mathematical plane. This yields a construction of
the growth process as a random combination of confor-
mal maps without memory (all maps chosen independently
from one of two possibilities). This dynamics has a micro-
scopic conformal invariance, demonstrating the conformal
invariance of the LRW, which could have been anticipated
by the known conformal invariance of the h � 1 LRW on
lattice. An image of a walk in cylindrical geometry pro-
duced by using this microscopically conformally invariant
dynamics is shown in Fig. 1, where the density of dots re-
veals the variation of the physical space cutoff.

The ansatz rq � yg1�q��1 1 x2�y2�g2�q� solves Eq. (2)
with

g1�q� � q 2 2mg2�q� , (3)

g2�q� �
m 1 1 2

p
�m 1 1�2 2 2mq
2m

, (4)

where we have chosen the sign of the square root which
gives the dominant contribution.

Multifractal spectrum.— From the previous section,
rq�0, y� �x, y� scales as yg1�q� near the growth tip (x � 0),
and as yg1�q�22g2�q� away from the growth tip. To derive
the multifractal spectrum t�q� in physical space from
these, we define a multifractal spectrum ty�q� in the
mathematical plane as a preliminary step, and we then
derive a useful inversion relation between ty�q� and t�q�.
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FIG. 1. Plot of an LRW with m , 1, using conformally in-
variant microscopic dynamics and �50 000 particles. Points in-
dicate the position of the tip after each growth step.

We define ty�q� byZ dx

y
j yF0�x 1 iy�jq ~ yty�q�. (5)

Define a Legendre transform fy�ay� � qay 2 ty�q�, with
ay � t0

y �q�. Then, by dividing the real line into segments
of length y, the number of such segments which map,
under F, into points separated by distance l � yay in the
physical plane scales as y2fy�ay�. Conversely, the number
of boxes of size l which map, under the inverse of F, into
size y � la scales as l2f�a�. Equating the above yields
the inversion relation for f�a�:

a � 1�ay, f�a� � afy�ay� . (6)

From Eq. (6) the functional inversion relation for t�q�
follows:

q � 2ty��� 2 t�q���� . (7)

We can break the integral in Eq. (5) into a contribution
away from the growth tip for x ¿ y and a contribution due
to the growth tip for x & y. The first contribution alone
would give ty�q� � g1�q� 2 2g2�q� 1 q 2 1, while the
second alone would give ty�q� � g1�q� 1 q. While the
true ty�q� is obtained by the minimum of these two val-
ues, we choose to consider these contributions separately,
giving moments away from the tip and near the tip.

The Legendre transform of ty�q� away from the tip is
fy�ay� � 1 2 �1 1 m�2��2 2 ay� 1 1��2 2 ay� 2 2	�
�2m�. This is maximum at ay � 1 (Makarov’s theorem
[4]), with fy�1� � 1 (Gauss’s law). The inversion for-
mula (6) gives

faway�a� � a 1
�1 1 m�2

4m

3

∑
1 2

1
2

µ
2a 2 1 1

1
2a 2 1

∂∏
. (8)

This coincides with the CFT spectrum for c � 13 2 6m 2

6�m. Thus, c � 1 implies m � 1. For self-avoiding walks
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(c � 0) m � 2�3, and for h � 1 on-lattice LRWs (c �
22) m � 1�2. For m , 1, the fractal dimension D �
1 1 m�2, so the maximum dimension is 3�2.

The Legendre transform of ty�q� near the tip is
fy�ay� � 1 1 m 2 �2 2 ay� �1 1 m�2��2m� 2 �m�2� 3

�1��2 2 ay�	. In this case, the inversion formula (6) gives

ftip�a� � 2
m

8�2a 2 1�
1

2 1 m
4

2
�2 1 m�2�2a 2 1�

8m
. (9)

This has a maximum of zero at a � �1 1 m���2 1 m�.
We find the superuniversal result that, for a , 2�3, f�a�
is dominated by the tip contribution (9), while, for
a . 2�3, f�a� is dominated by contributions away from
the tip.

Finally, for fixed y ø x, rq�x, y� ~ x2g2 . This gives a
further set of exponents for decay of the field along the
cluster as a function of distance x from the tip at small y,
which differs from the exponents for decay of the field at
x � 0 as a function of y. In this case a Legendre transform
of 2g2�q� yields a probability

x2a�m11�2�2m21��2ma�1�m11��m (10)

of having a field of order x2a , with a . 0. Note that,
while the most likely value is a � 1��m 1 1�, it is pos-
sible to have fields which are of the same order as the field
at the tip. However, there is no scaling relation to connect
these exponents to the decay of the field as a function
of distance from the tip in physical space at fixed small
distance away from the cluster. The reason we had the
inversion relations (6) above is that at a distance y from
the cluster the field is smooth on a scale y, however, for
y ø x, the field is not smooth on the scale of x.

The exponents (8) are invariant under m ! 1�m, al-
though the other sets of exponents are not. For m $ 1
the diffusion term is sufficiently strong so that the growth
process does not give rise to linear walks, but rather clus-
ters, since a point with y 
 0 and large x can diffuse back
to x � 0 despite the advection term in Eq. (2) (see Figs. 2
and 3). While the dimension of such clusters increases
above 3�2 as m increases above 1, the dimension of the
perimeter decreases as m increases and remains below 3�2,
giving, as mentioned above, the invariance of exponents
away from the tip. It is then not surprising that the ex-
ponents near the tip differ and depend on m and not just
on c.

Dynamical scaling.—There is a form of the electro-
static scaling law [5] for this system. We have (in radial
geometry) �dn�dF1�q � 1��lF1�q. By taking averages
on both sides, and noting that �l2q� ~ �F1�l1�2q 3

�l1�F1�t�22q�12q ~ F
2t�22q�
1 , we obtain

��dn�dF1�q� ~ F
2q2t�22q�
1 , (11)

where t�q� is the scaling near the tip, obtained from the
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FIG. 2. Plot of an LRW with m . 1, using fixed cutoff in
physical space and �50 000 particles.

Legendre transform of Eq. (9). Now consider the average
mass, n, at a given radius, F1. By integrating Eq. (11),
we obtain �n� ~ F

2t�22�
1 . Since 2t�22� � 1 1 m�2, for

m # 2, the dimension obtained from the electrostatic scal-
ing law agrees with that obtained above. This also gives a
dimension greater than 3�2 for clusters with m . 1. How-
ever, Eq. (11) shows that there are large fluctuations in
the growth rate and that the typical growth is slower than
average.

Now we consider the time-averaged growth rate. Af-
ter transforming to time t, Eq. (2) has only simple scal-
ing in the mathematical plane, t ~

p
y. As a first step to

finding moments of the time-averaged growth rate, con-
sider the average of a product of jF0j at different times:
�j

Q
i ��� yiF 0�x � 0, yi , ti����jq�. Suppose all jti 2 tjj are of

order y2
0 ¿ y2

i , so that the derivatives are correlated only
down to scale y0, and uncorrelated below. To determine
the effect of the correlations, consider this average for a
single time but suppose F 0�0, y0� is given, which imposes
boundary conditions on Eq. (2). Then, �j��� yF 0�0, y����jq� ~

� y�y0�ty�q�jF 0�0, y0�jq. Thus, for r points at separate times

FIG. 3. Plot of an LRW with m . 1, using conformally invari-
ant microscopic dynamics and �50 000 particles. m is greater
than for the cluster in Fig. 2.
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the ensemble average is*ÉY
i

��� yiF
0�0, yi, ti ����

Éq+
~

Y
i

� yi�y0�ty �q��jF 0�0, y0�jqr� .

(12)

Transforming to the physical plane we find [given that
there is probability � yi�y0�2fy�ay� of yi mapping to li ~

� yi�y0�ay jF 0�0, y0�j and using arguments as above Eq. (6)]*ÉY
i

liF
0�li , ti�

É2q+
~ y

rq1ty���2rt�q����
0

Y
i

l
t�q�
i . (13)

We can now obtain moments of the change in mass
�n2 2 n1�q between times t1, t2 by integrating

R
dn�dt and

applying Eq. (13),*√Z t2

t1

dn�dt

!q+
~ F

2qt�22�
1 �t2 2 t1�2q1ty���2qt�22�����2.

(14)

For t2 2 t1 * 1, this is ��
Rt2

t1
dn�dt�q� ~ F

2qt�22�
1 , so that

the total mass at a given radius is self-averaging. Over
shorter times, Eq. (14) indicates multiscaling of the mass-
radius relation or dynamical multiscaling connecting the
two times t,n. The origin of these large fluctuations is that
the tip may turn and grow towards the center of the cluster
rather than away, so that F1 may increase very slowly with
mass. The fluctuations in F1 are much less in DLA [11],
where growth occurs over the whole surface; while jF 0j22

may fluctuate locally, the average of jF 0j22 over the cluster
has much lower fluctuations.

Conclusion and renormalization group.—We have
demonstrated the conformal invariance of the LRW
and calculated exactly the multifractal exponents. This
provides an opportunity to realize clusters of different
conformal field theories as different LRWs, giving an
interesting connection between the iterated conformal map
technique and CFT. We obtained scaling of the harmonic
measure both along the curve and near the growth tip.
Because we have a solvable dynamic model, we are able
to obtain exponents characterizing the scaling in time.

After rescaling of time, the growth process was de-
scribed by random composition of two different conformal
maps. Other fractal sets, such as the Julia set, are obtained
by iterating a single conformal map.

It is interesting to note the lack of universality in these
results, so that by changing the ratio l2�l1 we are able to
obtain continuously varying exponents. In the on-lattice
LRW defined above, if successive particles are allowed (in-
stead of attaching to the tip) to attach within some distance
from the tip, we expect the dimension to change as the dis-
tance is varied, even with h held fixed.

Recently, it was argued [12] that, for h $ 4, DBM
clusters are asymptotically branchless, and hence one di-
mensional. One may wonder if instead these branchless
clusters are LRWs, as suggested previously [13], and have
dimension greater than one. However, the lack of univer-
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sality in the LRW implies that, even if such DBM clusters
with given h were to behave as LRWs, the resulting dimen-
sion need not be the same as that of an on-lattice LRW de-
fined with the given h; this h may be renormalized. More
importantly, we claim that an asymptotically branchless
DBM cannot behave as an LRW; if such a cluster were to
behave as an LRW, the tip would then occasionally double
back on itself, so that the point of strongest electric field
would not be at the tip (as shown, the field at large x in an
LRW can be of the order of the field at the tip), causing a
new side branch to appear and contradicting the assump-
tion of no branching. Thus, the possibility of side branch-
ing renormalizes the meandering of the LRW to zero and
what results is a single straight branch. The asymptotic
approach of the dimension to one for DBM clusters with
h $ 4 is confirmed numerically [14].

Formally, one may extend the renormalization group by
noting that the change in growth trajectory induced by
a single tip-splitting event gives a logarithmic correction
to the cluster size, an additional contribution beyond the
correction proportional to the branch size considered be-
fore [12]. This yields, at lowest order in tip splitting,
a log-squared correction to the cluster size, which is ac-
counted for by an additional scaling field, representing the
effective m of the LRW described by the cluster. However,
as argued, the possibility of side branching renormalizes
the m to zero. Thus, we may ignore these log-squared cor-
rections, as done previously.
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