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How to Couple Landau Theory to an Equation of State
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We show how to construct a Landau-type free energy based on a primary order parameter coupled to
finite strain with an elastic energy derived from an arbitrary equation of state V = V(P). The resulting
class of models provides an excellent and efficient framework for the systematic study of phase trans-
formations for a wide range of materials up to ultrahigh pressures.
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While the experimental and computational investigation
of high pressure phase transitions (HPPTs) has made con-
siderable progress [1-3], on the theoretical side a simple,
fairly general, and ready-to-use theoretical concept such
as an adaptation of Landau’s theory to the case of HPPTs
is still lacking. In fact, the gap in many treatments of
HPPTs is pretty obvious: The “stiffness” of any solid
is characterized by the isothermal compressibility «(P) =
—dlogV(P)/dP. At high pressures, as the interatomic
forces opposing further compression increase, a crystal’s
volume and lattice parameters develop a certain nonlinear
behavior. Various theoretical concepts can be employed to
derive so-called equations of state (EOS) [4—6] which de-
scribe the hydrostatic pressure dependence of the crystal’s
reduced volume v(P) := V(P)/Vy. At HPPTs anomalies
usually appear, e.g., in V(P) resulting from anomalies in
the pressure dependence of the lattice parameters a;(P),

= 1,2, 3, near a critical pressure P.. Frequently the cor-
responding P — V behavior is merely fitted to a number of
differently parametrized EOS for each phase [2,3,7]. Ad-
mittedly, this procedure seems to fit experimental volume
data in many cases, and, e.g., in the case of reconstruc-
tive transitions, often it is the only appropriate description
known. However, such an approach attempts neither to
describe the pressure behavior of individual strain compo-
nents nor to gain possible further thermodynamic insight,
which in principle should be available for, e.g., HPPTs
of the group-subgroup type. A more profound theoretical
approach would therefore be of vital interest to a broad
audience reaching from physicists studying high pressure
behavior of materials (crystals, liquid crystals, complex
liquids, biological membranes, etc.) to mineralogists and
geologists investigating earth’s bulk properties.

Let X denote the coordinates describing a crystal in
its undeformed reference state, X those of a deformed
state, and 5c\ coordinates of some further deformation. Let

ai(X) = = Six + ui(X) denote the accompanying
deformatron tensor with corresponding Lagrangian strain

1 PaNZaS [
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Foln(x); X 1d V denote the Helmholtz free energy [8] in
the deformed state X. Internal elastic equilibrium in X

can be characterized by the stationarity of Fo[6n(X); X ]
under infinitesimal displacements Bu,k(x) subject to the
boundary conditions fAA]Bu n; s = 0, i,j =1,2,3,
expressing invariance of surface. In fact, the corresponding
Lagrange multipliers constitute the Cauchy stress tensor
7;; (cf. [9-11]), implying the equilibrium conditions

1 0F(3: X)
vX) 9m;  Ip=o

Ti; = . iLj=123. (1

Suppose now that a crystal’s Helmholtz free energy
F(Q,%; Y) in the state ¥ depended on n further variables
0 = (Qi,...,0,) constituting the primary order parame-
ter of the Landau theory to be constructed. A calculation

similar to [9] then shows that stationarity of F' implies the
equilibrium conditions

1 aF(@,7:Y)

= —— a4 o i,j =123, (2a)
Ty oy n=0
1 9F(Q.0;Y
0= L FQUD o
V() 90w 0=0

where Q denotes the equilibrium value of Q. We identify
the background Helmholtz free energy as Fo(n; X) =

F(0,7; X ), evaluated in the state X characterized by
The deformation tensor a,-k(X ) = %

X
measured in X yrelds the tensor of spontaneous strain
zk - sz(Q) . z(z amank - lk) We now trans-
form Eqgs. (2) from the coordinates Y referring to the
system’s true internal equilibrium state to the back-

ground reference system X. Recall that a strain p;;

condition (1).

measured inY corresponds to the nonlinear superposition
N
nij = 6,, + Zmn QAomi Prm an, measured in coordinates
ni

X. Invariance of the free energy then yields the conditions
(i,j =1,2,3,N=1,...,n)
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where J[a@]:= detJ[a;] = V(I/})/V()?) denotes the
relative volume change. In the present work we content
our treatment to the case of linear-quadratic coupling of
strain and order parameter for the sake of simplicity only
and therefore consider the ansatz

F(Q,&X) = VX)®(Q: X) + V(X) D d(X)0,0,&;

1Jij
+ Fo(&:X). 4)

In the undeformed reference system X, the spontaneous
strain €;; is nonlinearly superimposed on the back-
ground straln e;j, yielding the total strain 7y = ey +
> Ak Emn Cnl - Invertlng this relation, inserting the
resulting expression for €,, into (4), and rearranging
terms, we obtain

MN — A
' (X) = J()Z

P(Q;X) X) 010,
@ 2 @

The ansatz (4) yields the equilibrium conditions

T = o :E: A A|j [::E: CZ;;L(;X:)Qzﬁfgzj,
T al

dMN (X)ay;, (5a)

D(Q:X) = d (X)ei;. (5b)

1 0Fy(&:X)
V(),f) den

A A }? (63)
e=¢€(Q)

aqn(Q X) + 2Zd L(X)01&5(@),  (6b)

0=

To overcome the apparent nonlinearities, we treat ey
as inﬁnitesimal [12].  Then am,an,/J[a] ~ 6,,”6,,,

and F()(G X) =~ V(X) [Z 711611 QZz/kl Cljkl(X) X
€ ,sz] where C; jkl(X ) are the crystal’s elastic constants
in the state X so Eq. (6a) simplifies to

ngL(i)QKQL + ZCijkl()?)lf\kl(Q) =0. (72
KL kl

Solving (7a) for €;;(Q) and inserting this into (6b), we
recognize [13] the renormalized order parameter potential

Op(0: %) = 2(Q: %) — ~ Y 0,0/0¢0;

4 1JKL

( ZdU(X)Cukl X)df/‘(X)) (8)

ijkl

Introducing the tensor
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ajrajoC i (X)a st (9)
T(a )”Zk; joCijki kst

0 can be calculated as the minimum of

Trost(X) =

DR(Q:X) = D(Q:X) + > d(X)eij(7)0,0,
1Jij
- g x LX) ”"’(X) dEL(X)
X 010;0k0L, (10)

and the total strain 7 is elegantly expressed as [14]

ny = eij — Z Ok 01 deL(X)Ti,,-kz(X). (11)
In the spirit of Landau theory, we assume ®(Q; X) to be a
polynomial in the variables Q; with constant coefficients,
leading to a purely “geometrical” stress dependence of
®(Q; X). To complete our approach, it remains to com-
pute the order-parameter independent “background,” i.e.,
the stress dependence of the elastic constants Cjji(X) and
the components «;;. For this purpose, we recall Hooke’s
law, stated as [15]

7ij(¥) = Biju(X)eu + 0(&?) (12)
with the Birch coefficients
Bijkl()?) = Cijkl()?) + %[Til(i)ﬁjk + le()?)ﬁik
+ Tik()?)ﬁjl + Tjk()?)ﬁil
— 27j(X)8u]. (13)
More generally, the compliances S;j[7] := B,_],l,()? ) ap-
pear in the nonlinear partial differential equations
de; ,[7]
0Ty

- Z aml[T]an][T]Smnkl[T] (14)

(i,j,k,1 = 1,2,3) with boundary conditions e;;[0] = 0
For crystals of orthorhombic or higher symmetry subject
to hydrostatic pressure 7;; = —P0;; and coordinates X
chosen along the crystal axes, all off-diagonal deforma-
tion tensor components vanish, i.e., a;;(P) = a;(P);;.
Compressibility and compliance are related by (cf. [15])

k(P) = > x—123Sx[P], and (14) reduces to the defini-
tion of the axial compressibilities
dloga;[P] .
—ar —%:Sik[P] =: k;(P) (i=1,2,3)
(15)
with «;[0] = 1. This suggests the ansatz

S;i[P] = %}D) (S,?, + Zl Kg,P">, (16)

where S ; denotes the zero-pressure compliance and the
expansion coefficients k;; ; satisfy the conditions Z K ;=
0V n € N. Using (16), Eq. (15) is integrated to give
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TABLE 1. Numbers ¢», g3, g4 of relevant (i.e., nonshear) elas-
tic constants of second, third, and fourth order as determined
from Refs. [18,19].

Cubic 1 Cubic II Tetragonal Orthorhombic
q2 2 2 4 6
q3 3 4 6 10
qa 4 4 8 15

o) 1 _ R
ai(P) = [JLo(pye " Jotroer @0 et/ (17
n=0

where «; :=>;k/, from which the hydrostatic
Lagrangian background strain e(P) is instantly com-
puted. From this, one can in principle calculate all
relevant observables such as the total (principal) strains
1:i(P), V(P), ki(P), C;i;(P), P-hysteresis intervals, etc.
Indeed, the axial compressibilities K,Q (i = 1,2,3) and the
parameters entering the chosen EOS can easily be deter-
mined from e.g., the lattice parameter slopes at P = 0 and
an EOS fit of volume data. In addition, cubic symmetry
implies that ;' = 0,n > 0, while for tetragonal and
orthorhombic symmetry the constants k;' can usually be
put to zero for n = 2 in practical applications, since the
dominant P dependence of S;;(P) is already covered by
the prefactors in Eq. (16). The suggested approximation
therefore just calls for g, — 1 additional elastic parame-
ters ng, where ¢, is the number of independent second
order elastic constants. Compared to the g3 + g4 fit
parameters taken from Table I required for a free energy
expansion using, say, only third and fourth order elastic
constants, the use of the above approximation scheme is
thus rewarded by a dramatic reduction of the number of
relevant fit parameters.

An analysis of measurements of tetragonal BaCu-
(Si4O010) and BaCr(SigOjg) single crystals illustrates
the simplicity of using the above concepts. By x-ray
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FIG. 1. Fit of the P dependence of reduced lattice parame-

ters a(P), a3(P), and reduced unit cell volume v(P) for
BaCu(Si;Oyg) using parameters from Table II.
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diffraction the P dependence of Ilattice parameters
ai(P) = a>(P), a3(P), and the unit cell volumes V(P)
of both crystals were measured very detailed at room
temperature in a diamond anvil cell. One observes
first order HPPTs at approximately 2.67 and 2.26 GPa,
respectively, characterized by discontinuities in a;(P),
as3(P), and V(P), the first order character being more
pronounced for BaCu(Si4O19). ®(Q; X) is constructed in
the following standard way [16]: The symmetry reduc-
tion P4/ncc to P42,2 is driven by the one-dimensional
irreducible representation 7, at the wave vector k = 0,
yielding a one component order parameter Q, which
is zero in the paraphase (P < P.) and nonzero in
the distorted phase (P > P.), suggesting the standard
form ®(Q;X) = #QZ + #Q“ + %QG, where
A(X),C(X) > 0. The tetragonal symmetry also dictates
di(X) = dy(X). Let Ko := 1/kq denote the isothermal
bulk modulus at P = 0. The Murnaghan equation of state
(MEOS) [17]

v(P) = (1 + K\P/Ko)~ "%, (18)

which is based on the simple ansatz 1/k(P) =: K(P) =
Ko + K{P, is frequently used to describe (P, V) data and
reproduces the values of K(P) correctly up to about 10%
[v(P) > 0.9] while being algebraically much simpler
than other approaches such as the “Vinet” or the “Birch-
Murnaghan” EOS used in the compression range
v(P) < 0.9 (cf., e.g., Refs. [4-7]). Figures 1 and 2 show
corresponding fits of unit cell volume and axes of both
BaCu(Si40yp) and BaCr(SizO;9) using the parameter
values of Table II. With these values, Eq. (10) yields
possible pressure ranges for hysteresis effects of 2.6—
29 GPa and 2.2-2.4 GPa for BaCu(Si4O19) and
BaCr(SisOq0), respectively. From the parameters
one also calculates that the geometrical error introduced
in assuming the spontaneous strain € to be infinitesimal

P(GPa)

FIG. 2. Fit of the P dependence of reduced lattice parame-
ters a(P), a3(P), and reduced unit cell volume v(P) for
BaCr(Si;O19) using parameters from Table II.
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TABLE II. Parameters used in Figs. 1 and 2.

BaCr(Si401())

BuCu(Si4Om)

A(X) 0.491 GPa 0.449 GPa
B(X) —1.0 GPa —0.2 GPa

C(X) 15.0 GPa 20 GPa

di(X) 2.82 GPa™! 13.75 GPa™!
d;(X) 7.23 GPa™! —0.33 GPa™!

a1 (0) 7.447 A 7.535 A
az(0) 16.14 A 16.09 A

P 0.0039 GPa™! 0.0035 GPa™!

KS 0.0097 GPa™! 0.001 085 GPa™!
s 0.0028 GPa™! 0.003 48 GPa™!
S% 0.0066 GPa™! 0.0089 GPa™!

K} 2.9 4.1

Kh —8.0 X 1074 GPa2 1.9 X 107* GPa™2
Kis 0.53 X 10~* GPa™2 —1.7 X 107* GPa™2
Ki3 7.4 X 107* GPa2 23 X 107* GPa2

is smaller than 0.35% and 0.9%, respectively, yielding an
error <0.1% in the total strain . In addition, we point
out that instead of introducing g3 + g4 = 14 third and
fourth order elastic constants necessary for a fourth order
expansion the elastic free energy (cf. Table I), the present
approach gets away with just g, — 1 = 3 additional
constants K%l, K112, K113 and the parameter K} entering the
MEOS. Finally, notice that in principle also quantities
like soft mode frequencies and even the (P,T) phase
diagram at high pressures can be investigated using the
present type of approach once we allow for the parameter
A(X) to be, say, linearly T-dependent and consider a
temperature-dependent EOS.
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