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How to Couple Landau Theory to an Equation of State
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We show how to construct a Landau-type free energy based on a primary order parameter coupled to
finite strain with an elastic energy derived from an arbitrary equation of state V � V �P�. The resulting
class of models provides an excellent and efficient framework for the systematic study of phase trans-
formations for a wide range of materials up to ultrahigh pressures.
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While the experimental and computational investigation
of high pressure phase transitions (HPPTs) has made con-
siderable progress [1–3], on the theoretical side a simple,
fairly general, and ready-to-use theoretical concept such
as an adaptation of Landau’s theory to the case of HPPTs
is still lacking. In fact, the gap in many treatments of
HPPTs is pretty obvious: The “stiffness” of any solid
is characterized by the isothermal compressibility k�P� �
2d logV �P��dP. At high pressures, as the interatomic
forces opposing further compression increase, a crystal’s
volume and lattice parameters develop a certain nonlinear
behavior. Various theoretical concepts can be employed to
derive so-called equations of state (EOS) [4–6] which de-
scribe the hydrostatic pressure dependence of the crystal’s
reduced volume y�P� :� V �P��V0. At HPPTs anomalies
usually appear, e.g., in V �P� resulting from anomalies in
the pressure dependence of the lattice parameters ai�P�,
i � 1, 2, 3, near a critical pressure Pc. Frequently the cor-
responding P 2 V behavior is merely fitted to a number of
differently parametrized EOS for each phase [2,3,7]. Ad-
mittedly, this procedure seems to fit experimental volume
data in many cases, and, e.g., in the case of reconstruc-
tive transitions, often it is the only appropriate description
known. However, such an approach attempts neither to
describe the pressure behavior of individual strain compo-
nents nor to gain possible further thermodynamic insight,
which in principle should be available for, e.g., HPPTs
of the group-subgroup type. A more profound theoretical
approach would therefore be of vital interest to a broad
audience reaching from physicists studying high pressure
behavior of materials (crystals, liquid crystals, complex
liquids, biological membranes, etc.) to mineralogists and
geologists investigating earth’s bulk properties.

Let X denote the coordinates describing a crystal in
its undeformed reference state, bX those of a deformed
state, and bx coordinates of some further deformation. Let

aik �X� � ≠bXi
≠Xk � dik 1 uik �X� denote the accompanying

deformation tensor with corresponding Lagrangian strain
eik �

1
2 �

P
n aniank 2 dik�. Let F0�bh�bx�; bX� �

R
V �bX� 3
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F0�bh�bx�; bX�d bV denote the Helmholtz free energy [8] in
the deformed state bX. Internal elastic equilibrium in bX
can be characterized by the stationarity of F0�dbh�bx�; bX�
under infinitesimal displacements dbuik�bx� subject to the
boundary conditions

RbS�bX�
dbujni dbS � 0, i, j � 1, 2, 3,

expressing invariance of surface. In fact, the corresponding
Lagrange multipliers constitute the Cauchy stress tensor
tij (cf. [9–11]), implying the equilibrium conditions

tij �
1

V� bX�
≠F0�bh; bX�

≠bhij

Ç
bh�0

, i, j � 1, 2, 3 . (1)

Suppose now that a crystal’s Helmholtz free energy
F�Q, bh; bY � in the state bY depended on n further variables
Q � �Q1, . . . ,Qn� constituting the primary order parame-
ter of the Landau theory to be constructed. A calculation
similar to [9] then shows that stationarity of F implies the
equilibrium conditions

tij �
1

V �bY �
≠F�Q̄, bh; bY �

≠bhij

Ç
bh�0

, i, j � 1, 2, 3 , (2a)

0 �
1

V �bY �
≠F�Q, 0; bY�

≠QN

Ç
Q�Q̄

, N � 1, . . . ,n , (2b)

where Q̄ denotes the equilibrium value of Q. We identify
the background Helmholtz free energy as F0�bh; bX� :�
F�0, bh; bX�, evaluated in the state bX characterized by

condition (1). The deformation tensor baik�bX� �
≠bYi
≠bXk

measured in bX yields the tensor of spontaneous strainbeik � beik�Q̄� :� 1
2 �

P
n bani bank 2 dik�. We now trans-

form Eqs. (2) from the coordinates bY referring to the
system’s true internal equilibrium state to the back-
ground reference system bX. Recall that a strain brij
measured in bY corresponds to the nonlinear superpositionbhij :� beij 1

P
mn bami brmn banj measured in coordinatesbX. Invariance of the free energy then yields the conditions

�i, j � 1, 2, 3,N � 1, . . . ,n�
© 2002 The American Physical Society 055503-1



VOLUME 88, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 4 FEBRUARY 2002
tij �
X
mn

bami banj

J� ba�
1

V� bX�

≠F�Q̄, be; bX�
≠bemn , (3a)

0 �
1

V �bX�
≠F�Q; be; bX�

≠QN

Ç
Q5Q̄

, (3b)

where J� ba� :� det J� baij� � V �bY ��V �bX� denotes the
relative volume change. In the present work we content
our treatment to the case of linear-quadratic coupling of
strain and order parameter for the sake of simplicity only
and therefore consider the ansatz

F�Q, be; bX� � V� bX�F�Q; bX� 1 V �bX�
X
IJij

dIJij �bX�QIQJbeij
1 F0�be; bX� . (4)

In the undeformed reference system X, the spontaneous
strain eij is nonlinearly superimposed on the back-
ground strain eij, yielding the total strain hkl � ekl 1P
mn amkbemnanl . Inverting this relation, inserting the

resulting expression for bemn into (4), and rearranging
terms, we obtain

dMNmn � bX� �
1

J�a�

X
ij

amid
MN
ij �X�anj , (5a)

F�Q; bX � �
F�Q; bX�
J�a�

1
X
IJij

QIQJ

J�a�
dIJij �X�eij . (5b)

The ansatz (4) yields the equilibrium conditions

tij �
X
kl

baki balj

�J ba�

"X
KL

dKLkl � bX�Q̄KQ̄L

1
1

V � bX�
≠F0�be; bX�

≠bekl
Ç
be�be�Q̄�

#
, (6a)

0 �
≠F�Q̄; bX�

≠Q̄K
1 2

X
L

dKLij � bX�Q̄Lbeij�Q̄� , (6b)

To overcome the apparent nonlinearities, we treat bekl
as infinitesimal [12]. Then bami banj�J� ba� � dmidnj

and F0�be; bX� � V� bX� �
P
ij tijbeij 1

1
2

P
ijkl Cijkl�bX� 3beijbekl�, where Cijkl� bX� are the crystal’s elastic constants

in the state bX, so Eq. (6a) simplifies toX
KL

dKLij � bX�Q̄KQ̄L 1
X
kl

Cijkl�bX�bekl�Q̄� � 0 . (7a)

Solving (7a) for eij�Q̄� and inserting this into (6b), we
recognize [13] the renormalized order parameter potential

FR�Q; bX� :� F�Q; bX� 2
1
4

X
IJKL

QIQJQKQL

3

√
2

X
ijkl

dIJij � bX�C21
ijkl� bX�dKLkl � bX�

!
. (8)

Introducing the tensor
055503-2
Trost� bX� :�
1

J�a�

X
ijkl

airajoC
21
ijkl� bX�aksalt , (9)

Q̄ can be calculated as the minimum of

FR�Q; X� � F�Q; X� 1
X
IJij

dIJij �X�eij�t �QIQJ

2
X
IJKL

ijkl

dIJij �X�
Tijkl�bX�

2
dKLkl �X�

3 QIQJQKQL , (10)

and the total strain h is elegantly expressed as [14]

hij � eij 2
X
KL

Q̄KQ̄L

X
kl

dKLkl �X�Tijkl�bX� . (11)

In the spirit of Landau theory, we assume F�Q; X� to be a
polynomial in the variables QL with constant coefficients,
leading to a purely “geometrical” stress dependence of
FR�Q; X�. To complete our approach, it remains to com-
pute the order-parameter independent “background,” i.e.,
the stress dependence of the elastic constants Cijkl�bX� and
the components aij . For this purpose, we recall Hooke’s
law, stated as [15]

tij�bY � � Bijkl�bX�bekl 1 O�be2� (12)

with the Birch coefficients

Bijkl� bX� � Cijkl�bX� 1
1
2 �til� bX�djk 1 tjl�bX�dik

1 tik� bX�djl 1 tjk�bX�dil
2 2tij�bX�dkl� . (13)

More generally, the compliances Sijkl�t � :� B21
ijkl� bX� ap-

pear in the nonlinear partial differential equations

≠eij�t �
≠tkl

�
X
mn

ami�t �anj�t �Smnkl�t � (14)

(i, j, k, l � 1, 2, 3) with boundary conditions eij�0� � 0.
For crystals of orthorhombic or higher symmetry subject
to hydrostatic pressure tij � 2Pdij and coordinates X
chosen along the crystal axes, all off-diagonal deforma-
tion tensor components vanish, i.e., aij�P� � ai�P�dij.
Compressibility and compliance are related by (cf. [15])
k�P� �

P
i,k�1,2,3 Sik�P�, and (14) reduces to the defini-

tion of the axial compressibilities

d logai�P�
dP

� 2
X
k

Sik�P� �: ki�P� �i � 1, 2, 3�

(15)

with ai�0� � 1. This suggests the ansatz

Sij�P� �
k�P�
k0

√
S0
ij 1

X̀
n�1

knijP
n

!
, (16)

where S0
ij denotes the zero-pressure compliance and the

expansion coefficients k
n
ij satisfy the conditions

P
ij k

n
ij �

0 ; n [ �. Using (16), Eq. (15) is integrated to give
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TABLE I. Numbers q2,q3, q4 of relevant (i.e., nonshear) elas-
tic constants of second, third, and fourth order as determined
from Refs. [18,19].

Cubic I Cubic II Tetragonal Orthorhombic

q2 2 2 4 6
q3 3 4 6 10
q4 4 4 8 15

ai�P� �
Ỳ
n�0

�y�P�e2n
R1

0
dt logy�Pt�tn21

�P
nk

n
i �k0 , (17)

where k
n
i :�

P
j k

n
i , from which the hydrostatic

Lagrangian background strain e�P� is instantly com-
puted. From this, one can in principle calculate all
relevant observables such as the total (principal) strains
hii�P�, V�P�, ki�P�, Cij�P�, P-hysteresis intervals, etc.
Indeed, the axial compressibilities k

0
i (i � 1, 2, 3) and the

parameters entering the chosen EOS can easily be deter-
mined from e.g., the lattice parameter slopes at P � 0 and
an EOS fit of volume data. In addition, cubic symmetry
implies that k

n
i � 0, n . 0, while for tetragonal and

orthorhombic symmetry the constants k
n
i can usually be

put to zero for n $ 2 in practical applications, since the
dominant P dependence of Sij�P� is already covered by
the prefactors in Eq. (16). The suggested approximation
therefore just calls for q2 2 1 additional elastic parame-
ters k

1
ij, where q2 is the number of independent second

order elastic constants. Compared to the q3 1 q4 fit
parameters taken from Table I required for a free energy
expansion using, say, only third and fourth order elastic
constants, the use of the above approximation scheme is
thus rewarded by a dramatic reduction of the number of
relevant fit parameters.

An analysis of measurements of tetragonal BaCu-
�Si4O10� and BaCr�Si4O10� single crystals illustrates
the simplicity of using the above concepts. By x-ray
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FIG. 1. Fit of the P dependence of reduced lattice parame-
ters a1�P�, a3�P�, and reduced unit cell volume y�P� for
BaCu�Si4O10� using parameters from Table II.
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diffraction the P dependence of lattice parameters
a1�P� � a2�P�, a3�P�, and the unit cell volumes V �P�
of both crystals were measured very detailed at room
temperature in a diamond anvil cell. One observes
first order HPPTs at approximately 2.67 and 2.26 GPa,
respectively, characterized by discontinuities in a1�P�,
a3�P�, and V�P�, the first order character being more
pronounced for BaCu�Si4O10�. F�Q; X� is constructed in
the following standard way [16]: The symmetry reduc-
tion P4�ncc to P4212 is driven by the one-dimensional
irreducible representation t2 at the wave vector k � 0,
yielding a one component order parameter Q, which
is zero in the paraphase �P , Pc� and nonzero in
the distorted phase �P . Pc�, suggesting the standard
form F�Q; X� �

A�X�
2 Q2 1

B�X�
4 Q4 1

C�X�
6 Q6, where

A�X�,C�X� . 0. The tetragonal symmetry also dictates
d1�X� � d2�X�. Let K0 :� 1�k0 denote the isothermal
bulk modulus at P � 0. The Murnaghan equation of state
(MEOS) [17]

y�P� � �1 1 K 0
0P�K0�21�K 0

0 , (18)

which is based on the simple ansatz 1�k�P� �: K�P� �
K0 1 K 0

0P, is frequently used to describe �P,V � data and
reproduces the values of K�P� correctly up to about 10%
[y�P� . 0.9] while being algebraically much simpler
than other approaches such as the “Vinet” or the “Birch-
Murnaghan” EOS used in the compression range
y�P� , 0.9 (cf., e.g., Refs. [4–7]). Figures 1 and 2 show
corresponding fits of unit cell volume and axes of both
BaCu�Si4O10� and BaCr�Si4O10� using the parameter
values of Table II. With these values, Eq. (10) yields
possible pressure ranges for hysteresis effects of 2.6–
2.9 GPa and 2.2–2.4 GPa for BaCu�Si4O10� and
BaCr�Si4O10�, respectively. From the parameters
one also calculates that the geometrical error introduced
in assuming the spontaneous strain be to be infinitesimal
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FIG. 2. Fit of the P dependence of reduced lattice parame-
ters a1�P�, a3�P�, and reduced unit cell volume y�P� for
BaCr�Si4O10� using parameters from Table II.
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TABLE II. Parameters used in Figs. 1 and 2.

BuCu�Si4O10� BaCr�Si4O10�

A�X� 0.491 GPa 0.449 GPa
B�X� 21.0 GPa 20.2 GPa
C�X� 15.0 GPa 20 GPa
d1�X� 2.82 GPa21 13.75 GPa21

d3�X� 7.23 GPa21 20.33 GPa21

a1�0� 7.447 Å 7.535 Å
a3�0� 16.14 Å 16.09 Å
k

0
1 0.0039 GPa21 0.0035 GPa21

k
0
3 0.0097 GPa21 0.001 085 GPa21

S0
11 0.0028 GPa21 0.003 48 GPa21

S0
33 0.0066 GPa21 0.0089 GPa21

K 0
0 2.9 4.1

k
1
11 28.0 3 1024 GPa22 1.9 3 1024 GPa22

k
1
12 0.53 3 1024 GPa22 21.7 3 1024 GPa22

k
1
13 7.4 3 1024 GPa22 2.3 3 1024 GPa22

is smaller than 0.35% and 0.9%, respectively, yielding an
error ,0.1% in the total strain h. In addition, we point
out that instead of introducing q3 1 q4 � 14 third and
fourth order elastic constants necessary for a fourth order
expansion the elastic free energy (cf. Table I), the present
approach gets away with just q2 2 1 � 3 additional
constants k

1
11, k

1
12, k

1
13 and the parameter K 0

0 entering the
MEOS. Finally, notice that in principle also quantities
like soft mode frequencies and even the �P,T� phase
diagram at high pressures can be investigated using the
present type of approach once we allow for the parameter
A�X� to be, say, linearly T-dependent and consider a
temperature-dependent EOS.
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