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Scaling and Universality in Turbulent Convection
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Anomalous correlation functions of the temperature field in two-dimensional turbulent convection are
shown to be universal with respect to the choice of external sources. Moreover, they are equal to the
anomalous correlations of the concentration field of a passive tracer advected by the convective flow
itself. The statistics of velocity differences is found to be universal, self-similar, and close to Gaussian.
These results point to the conclusion that temperature intermittency in two-dimensional turbulent con-
vection may be traced back to the existence of statistically preserved structures, as it is in passive scalar

turbulence.
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Heat and momentum transport in slightly heated flows
are governed by the Boussinesq equations [1]

9.T + v - VT = kAT + fr,
v +v-Vv=-Vp — BTg + vAv,

where T is the field of the temperature fluctuations, v is the
velocity field, g is the gravitational acceleration, S is the
thermal expansion coefficient, and «, v are, respectively,
the molecular diffusivity and viscosity. The system is kept
in a statistically stationary state by the external source of
fluctuations fr. We focus on the statistical properties of
temperature excursions at scales larger than the Bolgiano
scale /g—where buoyancy forces balance the inertial ones
in the velocity dynamics—yet smaller than the forcing
correlation length, L. In that range, temperature fluctua-
tions cascade toward the small scales where they are
eventually dissipated by thermal diffusivity. Dimensional
arguments based on this phenomenological picture would
lead to the Bolgiano-Obukhov scaling, in the range
Ig<<r<<L: S'(r)=(T(r,1)— T(0,0)]") ~ r"/>, and
SY(r) = {[v(r,1) — v(0,1)] - #}") ~ r¥/5 (see, e.g.,
Ref. [2] and references therein). Actually, due to the
presence of structures of warm-rising or cold-descending
fluid —the thermal plumes (see Fig. 1)—the statistics
of temperature increments exhibits a nontrivial scale
dependence. Indeed, as shown in Fig. 2, moments of tem-
perature increments display a scaling behavior ST (r) ~
ré characterized by exponents deviating from the dimen-
sional expectations. (Conversely, moments of velocity
increments, S¥(r) ~ r%’, do not show measurable devi-
ations from dimensional scaling, i.e., {! = 3n/5.) This
anomalous scaling is a feature shared by a large class
of turbulent systems: understanding the origin of this
phenomenon from first principles is a major challenge of
turbulence. For passive turbulent transport this problem
has been recently solved. Let us briefly recall the main
points, referring to Ref. [S]for a comprehensive review.
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We consider an idealized experiment of turbulent disper-
sion of a passive tracer, e.g., dye, in a convective flow. The
equation that governs the dynamics of the concentration
of tracer is

9,C + v -VC = kAC + fc, 2)

while the velocity field v evolves according to Eq. (1).
Although seemingly similar, the dynamics of temperature
and concentration fields are radically different:
temperature is an active scalar, since it affects velocity via
the buoyancy forces, whereas concentration is a passive
scalar. The concentration fluctuations show an anomalous
scaling behavior S¢(r) = ((C(r,t) — C(0,1)]") ~ rér
as well: the exponents ¢ differ from the dimensional
expectation.  Since S$(r) is a linear combination of
various n-point correlation functions of the concentration
field {C(xy,t)---C(x,,t)), the latter has to contain a
contribution, denoted as Z¢(xy,...,x,), that carries the
anomalous scale dependence. In mathematical terms,
ZE(Axy, ..., Ax,) = /\fncch(xl,...,xn). The main point
is that the function ZS is characterized by a special
dynamical property that distinguishes it from a generic
scaling function. Let us remind the reader that the passive
scalar equation (2) can be written in the equivalent
form %C = fc, where % stands for the total derivative
along the particle trajectories defined by the stochastic
differential equations dX = v(X,1)dt + 2k dW(1),
where W(r) is Brownian motion. The remarkable result is
that %(ch Yx = 0, where the total derivative is performed
following n particles advected by the flow, and the average
is taken over the ensemble of all trajectories. In plain
words, ZS is statistically preserved by the flow [6-9]. In
the specific context of a Gaussian, d-correlated velocity
field—the Kraichnan model —this is equivalent to say
that the functions Z¢ are zero modes of the Fokker-Planck
operator for n-particle diffusion [10—-12]. An important
consequence of statistically preservedstructures is that
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FIG. 1. Snapshot of the temperature and velocity fields.
Dark areas identify cold regions. The Boussinesq equations
(1) are solved in a two-dimensional doubly periodic domain,
with 10242 collocation points. The initial conditions were
taken from the statistically stationary state of a preliminary
run without buoyancy forces and with a random mechanical
forcing at small scales (see Ref. [3]). The Bolgiano scale
Iy = €/*N~3/4(Bg)"3? (where € and N are the small-scale
kinetic and thermal dissipation rates) coincides with the energy
dissipation scale =~ v/6,v and is approximately equal to
the smallest resolved length scale. The Rayleigh number is
Ra = BgL3ATv™2 = (L/I5)'%° = 107. Simulations at lower
Ra = 10° show similar results at scales L > r > [;. The
Prandtl number is »/k = 1. Since in two dimensions there is
a net energy flux toward the large scales, a statistically steady
state requires the momentum equation in (1) to be supplemented
by a friction term —aw that drags energy from the gravest
modes. As customary, diffusive and viscous terms are replaced
by hyperdiffusive (—xA?) and hyperviscous (—»A*) ones, to
confine dissipative effects to the smallest scales.
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FIG. 2. Scaling exponents of temperature, {7, and velocity,
{Y. The straight lines are the dimensional predictions, n/5
for temperature, 3n/5 for velocity. Notice that at orders larger
than n = § the temperature exponents saturate to a constant
value /I = 0.8 [4]. The error bars are estimated by the rms
fluctuations of the logarithmic slope. To ensure the statistical
convergence of high-order moments we collected 300 snapshots
of the fields, spaced by half of the large-eddy turnover time
L /<v2>1 /2.
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the passive scalar scaling exponents are universal with re-
spect to the choice of the injection f¢, since the latter does
not enter the definition of ZS.

We now turn our attention back to the temperature field.
What we have learned in the passive scalar case suggests
we should investigate the effect of the external forcing
fr on the scaling exponents. In Fig. 3 we show that the
scaling exponents of temperature fluctuations are the same
for two different choices of injection terms fr. Therefore,
we conclude that the exponents ¢! are universal properties
of two-dimensional Boussinesq convection.

The universality of scaling exponents suggests the
possibility that a mechanism similar to that at work in
passive scalar turbulence might be present in turbulent
convection as well. To further pursue this line of thought,
we notice that in the case of passive scalars, it is the whole
function Z¢ that is universal with respect to forcing, not
only its scaling exponent. It is thus of interest to look at
the anomalous part of the temperature correlation function
(T(xy,t)---T(x,,1)) to check whether it is universal.
This measurement is unfortunately quite difficult for two

reasons. First, the correlation function depends on 2n
independent coordinates; even if we exploit the statistical
symmetries of this function—translational and scaling
invariance—and we limit ourselves to the isotropic
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FIG. 3. The moments of temperature differences, S,{ (r), for
n = 2,4,6, as a function of the separation r. Note the paral-
lelism between curves of the same order n, within the scaling
range. The two sets of curves are generated by two different
kinds of injection mechanisms. In the first case (X), fr is a
random Gaussian forcing, with correlation { fr(r,t)fr(r',¢')) =
Fr(Ir — r'|)8(t — '), where Fr decays with the charac-
teristic scale L (approximately one-fourth of the box size);
in the second case (+), the system is driven by the term

7 = vg - u, which mimics the effect of a mean temperature
gradient on the transport of temperature fluctuations. We
consider only the isotropic contribution to the statistics, by
averaging over all directions of the separation r. For orders
equal or larger than n = 8 all exponents collapse—within
error bars— on the saturation value /7 = 0.8. The curves have
been multiplied by appropriate numerical factors for viewing
purposes. The equality of the scaling exponents /7 for the two
types of forcing has been checked by computing the logarithmic
slope d InST(r)/Inr (not shown).
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FIG. 4. The functions o7(r/R, 0) = S1,(R,r)/S4 (R) (left and center) and oc(r/R,0) = S5>(R,r)/S§ (R) (right), in polar coor-
dinates 0 < r/R < 1 and 0 < # < 27, where @ = cos (R - #). The color is white where the function is zero, black where it is
equal to unity. The function has a minimum at the origin, ¢ (0, 8) = 0, and a maximum o(1,0) = 1 at r = R.

contribution —by averaging over all configurations differ-
ing only by a rigid rotation—there will still be 2n — 4
degrees of freedom; in the most favorable case, n = 4
(for n = 2 deviations from dimensional scaling are not
detectable), the configuration space has four dimensions,
which makes it quite untractable. Second, the anomalous
part of the correlation function is hidden among several
other contributions: it can be extracted only by taking
proper linear combinations, as, for example, in the case
of ST(r). To circumvent, at least partially, those prob-
lems, we focus on a particular observable, SzT, (R, r) =
(T(R,t) — T, )A[T(r,t) — T(0,¢)]*), which is still
anomalous, yet it has a nontrivial geometrical con-
tent. Since for r = R it reduces to the usual S;(R)
we can write its functional dependence as SzT, (R, r) =
Si(R)or(r/R,0), where 0 is the angle between the di-
rections of r and R. Since the scaling exponent of Sj (R)
is universal, the bottom line is whether the “angular”
part or(r/R,6) is universal as well. In Fig. 4 we show
a plot of the function o for the two different injection
mechanisms (left and center). The similarity between the
two pictures points to the conclusion that the anomalous
part of the correlation function is again universal.

This result leads us to conjecture that statistically
preserved structures ZI(xy,...,x,) might exist also for
temperature: it is natural to define them by the property
%(Z,{ >x = 0, as in the passive scalar case. Notice,
however, that, since temperature is an active scalar, this
definition does not automatically ensure the universality of
ZT' Indeed, even if the forcing does not appear explicitly
in the definition of ZI, the statistics of the trajectories
X(¢) in principle depends on f7, via the action of T on
v. Therefore, should we accept the existence of statisti-
cally preserved structures, the universality of anomalous
temperature correlations requires us to postulate that the
whole statistics of v is universal as well. In Fig. 5 we
show that this is indeed the case.

Statistically preserved structures for temperature
fluctuations entail another interesting consequence: since
ZT' is defined entirely in terms of the (universal) statistics
of particle trajectories, and those are the same for both
temperature and concentration, we expect that ZI' = Z¢.
In Fig. 6 we show that the scaling exponents of tempera-
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ture and concentration are equal, as expected. As for the
“angular part” of Z!, it is quite similar to that of Z¢ (see
Fig. 4, center and right). This is further indirect evidence
for the existence of statistically preserved structures for
temperature statistics.

In conclusion, the global picture of scaling and uni-
versality in two-dimensional turbulent convection is as
follows.

Velocity statistics is strongly universal with respect
to the external driving: probability density functions
of velocity fluctuations are self-similar, and close to a
Gaussian distribution, independently of the choice of
fr. This is most likely a consequence of the observed
universal Gaussian behavior of the inverse energy cascade
in two-dimensional Navier-Stokes turbulence [13,14].
Indeed, velocity fluctuations in two-dimensional convec-
tion also arise from an inverse energy cascade which is
driven now by buoyancy forces. At variance with the usual
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FIG. 5. Probability density function of longitudinal velocity
increments 8,v = [v(r,1) — v(r,0)] - 7, rescaled to their stan-
dard deviation {(8,v)%)!/2. We show two sets of data obtained
by driving the system with random Gaussian forcing (X), and
by fr = yg - u (+). Here r = 0.2, inside the scaling range.
At different r the rescaled probability density functions col-
lapse onto each other, as expected for a self-similar statistics.
The Gaussian density function is shown as a dotted line, for
comparison.
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FIG. 6. Local scaling exponents of temperature (X) and con-
centration (A) fluctuations, {7 (r) = dInS(r)/d Inr. Tem-
perature and concentration are driven by independent Gaussian
random forcings.

Navier-Stokes inverse cascade, the energy injection now
is not restricted to small scales. Indeed, the energy input
rate e(r) = Bg - (v(r,1)T(0,1)) grows with the scale
as e(r) ~ r*5. This scale-dependent input induces the
observed scaling S”(r) ~ [e(r)r]"/® ~ r*"/5. Tempera-
ture statistics shows anomalous scaling. This stems from
the existence of statistically preserved structures, whose
existence explains the observed universality of anomalous
temperature correlation functions and the equality between
temperature and concentration anomalies.

Let us point out that the equivalence of the statistics of
an active scalar, as temperature, to that of a passive scalar,
as concentration, depends crucially on the universality of
the whole velocity statistics found here. That could, how-
ever, be a nongeneric phenomenon in active scalar turbu-
lence and depend on the specific form of the feedback of
the scalar field on the velocity. For example, in three-
dimensional turbulent convection the Navier-Stokes equa-
tions are characterized by a direct and intermittent energy
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cascade, the whole velocity statistics might then be nonuni-
versal, and a new type of universality might emerge.
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