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We report quantitative measurements of both wave number selection and defect motion in nonequi-
librium hexagonal patterns. A novel optical technique (“thermal laser writing”) is used to imprint initial
patterns with selected characteristics in a Bénard-Marangoni convection experiment. Initial patterns of
ideal hexagons are imposed to determine the band of stable pattern wave numbers while initial patterns
containing an isolated penta-hepta defect are imprinted to study defect propagation directions and veloci-
ties. The experimental results are compared to recent theoretical predictions.
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A wide variety of nonequilibrium systems exhibit
cellular patterns with hexagonal symmetry; examples
include volcanic basalt columns [1], nanometer-scale
anodization pores [2], along with other cases found in
hydrodynamics, nonlinear optics, chemistry, and biology
[1,3,4]. For a given system, the observed pattern is typi-
cally not unique but is one of many possible planforms,
even when the system’s external conditions are fixed.
Competition can even arise between ideal patterns of
2D, perfect hexagons, where each planform possesses a
different characteristic length scale. Defects are believed
to play a central role in the process of pattern selection
[4]. In hexagonal planforms, the most common defect is a
penta-hepta defect (PHD), in which a pentagonal cell and
a neighboring heptagonal cell are paired together and em-
bedded in a lattice of otherwise hexagonal cells (Fig. 1).
Recent theoretical [5,6] and experimental [7] investiga-
tions have studied the dynamics of PHDs; nevertheless,
the mechanisms by which defects lead to the selec-
tion of nonequilibrium cellular patterns are still poorly
understood.

In this paper, we report on experiments of Bénard-
Marangoni convection where three fundamental behaviors
of nonequilibrium hexagonal patterns have been measured.
Hexagons arise at the onset of convection and are stable for
a range of wave numbers limited by secondary instabilities.
Imposing perfect hexagonal patterns as initial conditions
enables the first measurement of the stable wave number
band for hexagons (Fig. 2). This wave number band is
related to the dynamics of PHDs, which are studied by im-
posing a single defect embedded in a hexagonal pattern. In
particular, the defect typically moves in a way that selects
a wave number near the center of the stable band (Figs. 3
and 4). Our studies demonstrate, for the first time, that the
average direction of the defect motion depends strongly on
the wave numbers in accord with recent theoretical predic-
tions [6] (Fig. 3). Studies of the defect motion also reveal
time-dependent behavior not described by current models
of PHD motion (Figs. 3 and 5). This time dependence is
related to elementary topological processes observed in a
wide variety of cellular patterns [1].
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The experiments are typically performed on a silicone
oil layer of depth 0.094 6 0.003 cm and viscosity 10 cS
that is bounded from below by a 1-cm-thick aluminum
mirror. A 5-mm-thick zinc sulfide window lies above
the liquid layer, separated from the liquid layer by a
uniform air layer of depth 0.074 6 0.003 cm. The liquid
is confined by a Teflon-coated aluminum sidewall ring of
inner diameter 7.62 6 0.001 cm, yielding radius to height
ratio 40.5 of the convecting region. The liquid and the air
layer depths each vary by less than 0.1% over the central
75% of the convecting region, as measured interferomet-
rically. The window is maintained at 22.39 6 0.03 ±C by
closed-loop circulation of temperature-controlled carbon
disulfide in contact with the window. The use of zinc sul-
fide windows and carbon disulfide cooling permits optical
access to the experiment at wavelengths in both the visible
spectrum for visualizing the flow and the infrared spec-
trum for perturbing the flow with a laser. A temperature
gradient is imposed across the liquid layer by heating the
mirror under computer control. When the imposed
temperature difference across the liquid layer DT is
sufficiently small, the surface tension s�T� at the liquid-
gas interface is uniform; however, when DT exceeds
1.57 6 0.01 ±C, instability causes temperature-induced
surface tension variations (thermocapillarity) that drive
cellular flow patterns in the bulk (Fig. 1). Thermocapil-
larity dominates over buoyancy, which is also present for
heating from below, since the quantity G �

sT

ragd2 . 1
(G � 8.5, typically), where r is the liquid’s density,
a is the thermal expansivity, sT � 2

ds

dT is the surface
tension temperature coefficient, and g is the gravitational
acceleration [8]. The time scale in the experiment is set
by the vertical diffusion time, ty � d2�k � 8.8 s, where
k is the liquid’s thermal diffusivity.

The shadowgraph technique [9] is used to visualize pat-
terns. Images are digitized and a reference background
image is subtracted from each data image to improve the
signal-to-noise ratio. The patterns are analyzed using a va-
riety of Fourier and complex demodulation techniques to
extract the spatial dependence of the pattern wave number,
amplitude, and phase [7,10,11].
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FIG. 1. The process of imposing patterns in Bénard-
Marangoni convection is shown for e � 0.28 using shadowgra-
phy of the liquid layer’s planform. Warm liquid upwells in the
cell centers (dark areas) and flows down at the cell edges (bright
lines). (a) Disordered patterns form when the temperature
difference across a liquid layer is increased rapidly above
convective onset. (b) An infrared laser is rapidly scanned across
the free surface of the layer; the beam’s position is indicated by
the dark vertical line in the center of the pattern. This selective
heating forces the flow to rearrange into a desired planform,
either (c) ideal hexagons or (d) an isolated penta-hepta defect
surrounded by hexagonal cells. In both cases, the patterns may
be described by the superposition of three plane waves (rolls)
with wave vectors k1, k2, and k3 mutually separated by 120±.
Outside the dot-dashed lines in (c) and (d) laser heating is
continually applied to decouple the dynamics of the planform
interior from that near the sidewall.

Patterns are imposed using an infrared CO2 laser scanner
(“thermal laser printer”) that radiatively heats the liquid-
air interface (Fig. 1). Thermal imprinting with high in-
tensity lamps was used by others to study wave number
selection in Rayleigh-Bénard convection [12]. In our case,
imprinting occurs when an infrared laser beam strikes the
liquid layer. The infrared radiation is strongly absorbed
by the liquid, creating a local hot spot near the liquid-air
interface. The surface tension at the hot spot is reduced
since ds

dT , 0. Liquid is pulled away from the hot spot to-
ward cooler regions at the interface and is replaced by fluid
flowing up from the layer below. Thus, laser-induced hot
spots determine areas of upflow in the convection pattern.
By scanning the laser across the layer, a hexagonal array
of upflows can be imposed. This method can even alter
a preexisting convection pattern when the laser power is
sufficiently large. The imposed pattern is typically estab-
lished in 30 s, whereupon the laser heating is turned off
in the central 75% of the convecting layer and the sub-
sequent evolution of the pattern is studied. Laser heating
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FIG. 2. The band of stable wave numbers k for ideal hexagonal
patterns (k � k1 � k2 � k3) is shown for a range of reduced
temperatures e. The experimentally determined stable wave
numbers lie between the low and high k boundaries (3) and
are compared with the theoretical predictions (solid lines) of
Bestehorn [14].

is maintained in the outer 25% of the convecting layer to
decouple the pattern dynamics in the interior of the appa-
ratus from flows driven by temperature nonuniformities at
the sidewall. Typically, the wave number imposed near the
sidewall is identical to that imposed in the interior; if there
are significant mismatches in the imposed wave numbers
between the interior region and the sidewall region, then
defects often form at the boundary and propagate into the
pattern interior, leading to inconsistent measurements.

The range of stable wave numbers (Fig. 2) is mea-
sured by observing the time evolution of initially per-
fect hexagons with wave number k � jk1j � jk2j � jk3j.
These measurements are inspired by the classic experimen-
tal studies [12] of the stability of single plane waves (rolls)
in pure buoyancy-driven (Rayleigh-Bénard) convection,
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FIG. 3. Trajectory of an isolated penta-hepta defect for equal
(a) and unequal (b) wave numbers for e � 0.28. Dashed arrows
indicate direction of defect motion. The trajectories are plotted
on the defect-free mode k1. (a) For (k1 � k2 � k3 � 2.37) path
is roughly parallel to k1. (b) Trajectory after k2 is decreased by
less than 5% to 2.31.
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FIG. 4. Average defect velocity along k1 is plotted as a func-
tion of wave number k for k1 � k2 � k3 with e � 0.28. Defect
velocity parallel to k1 is positive, antiparallel to k1 is negative.

where well-known theoretical predictions (the “Busse bal-
loon”) have identified secondary instabilities limiting the
stable wave numbers for rolls [13]. More recently, theo-
retical predictions of secondary instabilities for Bénard-
Marangoni convection have been made by Bestehorn [14].
Ideal hexagonal patterns within the experimental band are
observed to be time independent for the entire duration
of a given experiment �&104ty�. However, outside the
band ideal hexagons are unstable; point defects (typically
PHDs) form either at the lateral boundary or in the bulk
and propagate rapidly throughout the pattern inducing dis-
order. This motion of defects is transient, the dynamics are
relaxational, and the pattern eventually ��300 ty� reorders
itself and settles down into a time-independent state of non-
ideal hexagons, i.e., k1 fi k2 fi k3 (rhombs [15]), with a
mean wave number that always lies within the range of
stable wave numbers for ideal hexagonal patterns (Fig. 2).

The agreement between experiment and theory [14] for
the stability boundaries is better for smaller e than for
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FIG. 5. Time series of defect speeds for k1 � k2 � k3 at e �
0.28 corresponding to (a) pentagonal cell collapse with k �
2.23 and (b) heptagon mitosis with k � 1.95. The solid line
indicates the magnitude of velocity perpendicular to k2, while
the dashed line shows the magnitude of velocity perpendicular to
k3. Pentagonal cell collapse is characterized by jumps in PHD
motion that occur alternately between directions perpendicular to
k2 and perpendicular to k3; this alternating character is shown
in (a). By contrast, PHD motion during heptagon mitosis is
smoother, as shown in (b).
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larger e (Fig. 2). For e & 0.5, experiment and theory
agree quantitatively for the low k boundary of the stable
band, which exhibits little change as e increases. At the
high k boundary for e & 0.5, both experiment and theory
exhibit a shift toward larger k with increasing e; how-
ever, the experimentally determined high k boundary typi-
cally lies outside that predicted by theory. By contrast,
for e * 0.5, the theoretially predicted boundaries for both
low and high k shift toward larger values of k with increas-
ing e while the experimentally determined boundaries ex-
hibit little dependence on e. The discrepancies between
theory and experiment may be due to differences between
the conditions of the experiments (G � 8.5 at a Prandtl
number of 100) and of the theory (G � 2.7 at infinite
Prandtl number) [14].

Our findings differ qualitatively from those of Cerisier
et al., who observed that ideal hexagons, imposed using a
mechanical method, slowly evolve to disordered patterns
with a unique average wave number [16]. In our experi-
ments, a narrow range of stable average wave numbers is
observed when no lateral boundary is imposed; in this case,
the creation and annihilation of defects confined to the
lateral boundaries stretches or shrinks k1, k2, k3 of initially
ideal hexagons, leading to the formation of rhombs.

The dynamics of PHDs are studied by observing the
time evolution of a single PHD initially embedded in the
center of a hexagonal pattern (Fig. 1d). This pattern can
also be described as a superposition of three rolls with
well-defined k1, k2, k3 far from the defect. One of the
rolls is defect-free (k1 in Fig. 1d) and the other two rolls
(k2, k3 in Fig. 1d) each contain a single dislocation located
at the PHD core. For any counterclockwise closed path
encircling the defect core, phase jumps of 22p for k2 and
12p for k3 are found; in other words, the dislocations
have opposite phase winding numbers [10]. The position
of the PHD is determined by using complex demodulation
to find the location of the phase singularity in k3 rolls.
(Use of the k2 dislocation yields similar results.)

The mean propagation direction of a single PHD de-
pends strongly on the relative magnitudes k2 and k3 in ac-
cord with theoretical predictions [6]. When patterns are
imposed with k1 � k2 � k3 at the lateral boundary, the
defect propagates parallel or antiparallel to k1 (Fig. 3a).
This direction is unchanged, even when k1 is varied to dif-
fer from k2, k3. However, when k2 and k3 differ, the mean
propagation direction changes and depends on the ratio k2

k3

(Fig. 3b). It is worth noting that in experiments on an
equilibrium system (a planar array of soap bubbles) with
k1 � k2 � k3, PHDs are found to propagate perpendicu-
lar to k1 [7].

For k1 � k2 � k3, the choice between parallel vs an-
tiparallel propagation along k1 is related to the band of
stable wave numbers for ideal hexagonal patterns (Figs. 2
and 4). Simply put, the defect moves in a direction that
adjusts the local wave number near the defect to a value
that is closer to the center of the stable wave number band
054501-3
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(Fig. 2). For wave numbers at large (small) k, defect
propagation parallel (antiparallel) to k1 removes (adds)
two rows of hexagonal cells; the dislocations of the rolls
k2, k3 move by a combination of climb and glide to elimi-
nate (add) a roll for each plane wave. There is a value of
wave number where the defect is stationary (Fig. 4). These
observations are in qualitative agreement with predictions
from amplitude equations [6]. However, the models pre-
dict defect velocities go to zero for k � kc, the critical
wave number at onset from linear stability theory. We find
that the value of k for stationary PHDs differs from kc for
finite values of e.

A closer examination of the defect motion shows that it
is time dependent, a feature that is not captured by current
theoretical models which take as an ansatz that the veloc-
ity is steady. When the defect propagates parallel to k1
(va . 0 in Fig. 4) it does so by alternately eliminating a
cell from rows perpendicular to the k2 and k3 directions.
The resulting path is spatially nonuniform, but the overall
direction is parallel to k1 (Fig. 3a). Time dependence is
due primarily to collapse of pentagonal cells, which oc-
curs through combinations of elementary topological T1
and T2 processes [1]. The T1 processes cause slow re-
arrangement of the cell downflow intersections, resulting
in small defect speeds. Intermittently, however, T1 and T2
processes together cause pentagons to vanish, resulting in
a large jump in speed (Fig. 5a). In terms of the underlying
roll patterns the jumps in speed correspond to glide of dis-
locations occurring alternately in the k2 and the k3 modes.
This speed jump also corresponds to displacement of the
defect by approximately p�k parallel to k1.

When the defect trajectory is antiparallel to k1, the
defect speed is time dependent with smoother variations
(Fig. 5b). In this case the motion is a result of the creation
of cells by the qualitatively different topological process of
cell division (mitosis) of heptagonal cells [1]. Heptagon
mitosis results in displacement of the defect by approxi-
mately p�k antiparallel to k1.

In summary, our results demonstrate that the use of con-
trolled initial conditions in experiments permits measure-
ments of the dynamics of nonequilibrium patterns, both
with and without defects. Work is currently in progress
to explore the band of stable wave numbers for nonideal
hexagonal patterns for a wide range of e. Work is also
054501-4
underway to explore the use of multipoint heating as feed-
back for controlling patterns; in particular, we are ex-
ploring methods of dynamically altering the trajectories of
defects in hexagonal patterns.
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