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We introduce a sandpile model where, at each unstable site, all grains are transferred randomly to
downstream neighbors. The model is local and conservative, but not Abelian. This does not appear to
change the universality class for the avalanches in the self-organized critical state. It does, however,
introduce long-range spatial correlations within the metastable states. For the transverse direction d� .

0, we find a fractal network of occupied sites, whose density vanishes as a power law with distance into
the sandpile.
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One of the puzzling questions about macroscopic com-
plex phenomena concerns the mechanisms responsible for
the large spatially correlated structures that are often seen
in nature. It has been proposed that self-organized critical-
ity (SOC) [1] may be one mechanism in which the inter-
mittent, scale-free threshold dynamics of a slowly driven
system is intimately linked to the emergence of long-range
spatial (and temporal) correlations in it [2]. An obvious
candidate for this picture would be the stick-slip dynamics
of earthquakes, described by the Gutenberg-Richter power
law distribution for seismic moments, and faults, which
form a fractal pattern in the crust of the earth. However,
the simple sandpile, or earthquake models do not clearly
show large scale structures. Furthermore, although many
macroscopic systems show bursty transport phenomenol-
ogy, a general feature of SOC, the link is not yet estab-
lished because questions of robustness and universality are
not yet resolved. Since the number of possible models that
may be studied numerically is inexhaustible, it is essential
to determine the symmetry (or other) criteria for universal-
ity [3] and robustness of SOC.

Here we propose what may be the simplest sandpile
model that gives large spatially correlated structures. For
transverse dimension d� . 0 the avalanches in the model
have a scale-free distribution with critical coefficients that
are determined numerically to be in the same universal-
ity class as the Abelian stochastic directed sandpile model
(A-SDM) [4–6]. There it has been proven that no spatial
correlations exist in the steady-state metastable configura-
tions [5]. The model we introduce is closely related to
the A-SDM, but a change in the rule for updating unstable
sites breaks the Abelian symmetry. The Abelian symmetry
refers to the fact that the order for updating the unstable
sites has no effect on the final state that is reached.

This symmetry breaking introduces obvious large scale
structures, consisting of a fractal network of occupied
sites, within the metastable states that are reached in the
steady state, as shown in Fig. 2. These spatial corre-
lations are not present when the symmetry is restored.
The avalanches change the fractal network configuration
slowly, just as earthquakes change the configuration of
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faults slowly. During a single or a few events it might
appear falsely that the network configuration is static or
“preexisting.”

Since breaking the Abelian symmetry has no effect on
the critical exponents for the avalanches, for d� . 0, there
is universality and robustness for the dynamics. However,
two systems in the same universality class with respect to
the scaling behavior of avalanches show totally different
structures of the metastable states, with one being com-
pletely uncorrelated and the other having merging chan-
nels of occupied sites, or fractal networks at large scales,
with a power law decay of density.

Consider a two dimensional square lattice as shown in
Fig. 1. The direction of propagation is labeled by xk, with
0 # xk , L. The transverse direction is labeled by x�,
with periodic boundary conditions. On each site, an in-
teger variable z�x� is assigned. The ith grain is added
to a randomly chosen site xi on the top row, so xik � 0.
There z�xi� ! z�xi� 1 1. When any site acquires a height
greater than zc it topples, transferring all the grains at that
site, i.e., z�x� ! 0 for z�x� . zc. Each grain from a top-
pling site is given equal probability to go to either down-
stream nearest neighbor, independent of where the other
grains from the toppling site are placed. For each toppling
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FIG. 1. The model in d� � 1. All grains from unstable sites
in row xk are thrown randomly onto neighboring sites in the next
row xk 1 1.
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event, the total number of grains is conserved. This is true
except at the open boundary xk � L 2 1 where toppling
sites simply discharge their grains out of the system.

Sites are relaxed according to a parallel update until
there are no more unstable sites, and the properties of the
resulting avalanche are recorded. Then a new avalanche is
initiated by adding a single grain to a randomly chosen site
on the top row, xk � 0. An avalanche can be characterized
by, e.g., its distance, the largest xk row affected, its size,
s, the total number of grains thrown in toppling events,
the number of update steps, t, and the maximum number
of grains thrown at a single site which topples, nmax. The
fact that z is set to zero at a toppling site makes the model
non-Abelian. The corresponding rule for the A-SDM for
an unstable site is, e.g., z�x� ! z�x� 2 2.

In a recent work, Dhar [7] has shown that the stochastic
Manna model [8], where a fixed number of grains are re-
moved from toppling sites, exhibits the Abelian property
and is a special case of the Abelian distributed processors
model. This property was used to solve analytically for the
critical state properties of the A-SDM, since in that case
the Abelian property makes the appropriately mapped dy-
namics invertible [5], which leads to the product measure
property of the metastable states, and the solvability of the
A-SDM. However, when all grains from unstable sites are
removed in toppling then the model is not Abelian any-
more, and these specific analytical methods do not apply.

It is straightforward to generalize the definition of our
non-Abelian sandpile model to higher dimensions, with the
number of directions transverse to the direction of propa-
gation being d�. The threshold zc can be chosen either to
scale with dimension as zc � 2d� 1 1 or it can remain
constant at zc � 1. Within numerical error, the same scal-
ing exponents and similar spatial structures are observed
under both conditions [9]. For simplicity, the results pre-
sented here in the figures refer to the model with zc � 1
in all dimensions.

We performed numerical simulations on systems rang-
ing from L � 1024 to L � 32 768 for d� � 0, L � 1024
to L � 8192 for d� � 1, and L � 256 to L � 2048 for
d� � 2. Statistics were collected in the steady state for at
least 107 avalanches for each system size. The transverse
lengths were chosen large enough so that the avalanches
never wrapped around on themselves.

First, we discuss the case d� � 1. From the dynamical
rules it is clear that the avalanches must, themselves, be
essentially compact. Thus each avalanche sweeps out areas
of the lattice leaving empty sites. At the edges of the
avalanche, sites occupied with grains may remain. Thus in
the stationary state the structure of the sandpile will consist
roughly of empty areas bounded by wandering paths of
occupied sites, which can branch and recombine. At xk �
0, where the grains are added, the network of grains is
dense, but pushing into the sandpile it becomes coarser
and coarser. This coarsening reflects the fact that the rarer
avalanches that reach farther into the system are bigger and
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wider and thus leave traces at their edges that are farther
apart. A steady-state sandpile configuration is shown in
Fig. 2.

The average density of sites occupied with grains scales
with distance from the edge, xk � 0, where grains are
added, as r�xk� � x2a

k , with a � 0.45 6 0.02. This
power law behavior comes about because the various chan-
nels merge in a self-similar manner, due to the power law
distribution of distances, xk, that avalanches reach into the
system, as discussed later. Making a vertical cut in the sys-
tem from the top, xk � 0, to xk � l, the average number of
occupied sites which intersect the cut scales as Nc � ldc ,
with dc � 1 2 a. Since dc , 1, due to the merging of
channels, the networks are fractal. This fractal network
of grains is essential for maintaining the steady state of
SOC, providing a drainage outlet for grains to be trans-
ported from the top to the bottom of the system. The situa-
tion for the A-SDM is completely different. In that case,
the density of occupied sites is 1�2 for d� � 1, and the
occupation numbers for sites are completely uncorrelated,
being described by a product measure in the steady
state [5].

Despite these vast differences in steady-state configura-
tions between the Abelian model and our model, the distri-
bution of avalanche sizes and distances in the steady state
of SOC exhibits finite size scaling (FSS) with the same
critical exponents, within numerical accuracy. The FSS
ansatz for the probability distribution of avalanche sizes,
s, in a system of size L can be written as

PL�s� � s2ts G

µ
s

LD

∂
, (1)

where G is some scaling function and ts and D are critical
exponents describing the scaling of the distribution func-
tion. The probability distribution of avalanche durations,
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FIG. 2. A steady-state configuration of our d� � 1 sandpile
model showing sites occupied with grains forming a network
that can transport grains from one end of the sandpile to the
other. Note that the network becomes coarser going into the
system as the various channels merge. The shaded area indicates
the sites which toppled in the preceding avalanche.
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PL�t�, is described by a similar equation with exponents
tt and Dt. A similar power law distribution also describes
the distribution of avalanche distances, PL�xk�.

All the critical exponents characterizing avalanches in
the A-SDM have been determined analytically [5,6] and
numerically [4,6,10]. We find numerically for our non-
Abelian model in d� � 1 that ts � 1.43 6 0.02, tt �
D � 1.75 6 0.01, compared to the analytic values for the
A-SDM ts �

10
7 and tt � D �

7
4 . This is demonstrated

in Fig. 3 where numerical results for the size distributions
of avalanches, for both the A-SDM and our non-Abelian
model, are presented.

Configurations in the steady state of our sandpile model
in d� � 2 exhibit the type of domain tube structure with
walls separating the different domains. The tube domains
get wider as they go into the system, indicating a vanish-
ing density of occupied sites and a fractal network struc-
ture. Again, a numerical analysis of the avalanche size
distribution using finite size scaling gives critical expo-
nents ts � 1.5 6 0.03 and D � 2.0 6 0.02, the same
values as determined analytically, e.g., ts �

3
2 and D � 2,

for the A-SDM [5,6]. Similarly for the distribution of
avalanche durations, t, we observe finite size scaling with
exponents tt � 2.0 6 0.02, and Dt � 1. There is no such
tube structure, though, in the A-SDM.

The situation in d� � 0 is more subtle and less robust.
This model is a chain of sites. Since each site has only
one downstream nearest neighbor, the dynamical rules of
the model must be specified in a slightly different way.
We allow grains to be distributed to both the nearest and
next-nearest neighbors down the chain and consider two
ways in which the relaxation of critical sites can be or-
dered. With a parallel update rule all critical sites are re-
laxed simultaneously. In this case, the time in terms of
the parallel update at which a site can become critical is
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FIG. 3. Finite size scaling analysis of A-SDM and our sandpile
model with d� � 1. The values of the exponents used for the
collapse are ts � 1.43, D � 1.75.
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not equal to its row number and sites may topple many
times during an avalanche, e.g., at update time t � 2 from
the beginning of the avalanche, the avalanche site xk � 3
may relax.

We can also define another distinct model by updating
only the site xk � t, so at each time step only one site
is updated. Multiple toppings cannot occur in that case.
These two models lead to different sets of critical expo-
nents for the avalanches in d� � 0.

The parallel update dynamics yield the same avalanche
exponents as the Abelian model that was studied by Kloster
et al. [6] (see Fig. 4). We found good data collapse for sys-
tem sizes ranging from L � 1024 to L � 32 768, for both
the size, s, and the duration (number of parallel update
steps), t, of the avalanches. However, the average occu-
pancy of sites in the steady state does not decay to zero
as xk increases, as in our model in higher dimensions. In-
stead it is constant r�xk� �

1
4 , apart from close to xk � 0

where the average occupancy adjusts exponentially from
the initial value of 1

2 . Occupied sites do not appear to be
spatially correlated. Thus the behavior of the model is very
similar to its Abelian relative [6] and appears to be in the
same universality class with exponents ts � 1.33 6 0.02
and tt � D � 1.5 6 0.01.

In the parallel update dynamics, as more than one site
can topple at each time step and the location of the top-
plings is allowed to vary, the avalanches themselves have
internal structure. On average the active front moves
through the system with velocity 1.5 (i.e., advances three
lattice spaces in two parallel updates, on average). Around
this average the active sites are split into a series of smaller
fronts which spread, branch, and recombine (see Fig. 4
inset).

FIG. 4. Finite size scaling of the distribution of avalanche sizes
for the A-SDM and our model with parallel update in d� � 0,
using ts � 1.33 and D � 1.5. The inset shows the position of
active sites away from the average at each time step.
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The critical exponents for the single site update rule
differs from those of the parallel update model. A fi-
nite size scaling analysis of the avalanche size distribu-
tion over the same range of system sizes does not collapse
with the same exponents as the d� � 0 A-SDM, but with
D � 1.1 6 0.02 and ts � 1.23 6 0.02. The density of
occupied sites decays going into the system from the top
where the grains are added. It behaves as r�xk� � x2a

k ,
with a � 1.

Some hints to understanding all of this may be found in
previous analytical works. It is known that avalanches in
SOC, generally, correspond to the spread of activity at an
absorbing state phase transition [11–13]. They are mathe-
matically described in the A-SDM by a variant of the
Edwards-Wilkinson [14] stochastic interface equation for
a dynamical height variable h�x, t�, where the noise am-
plitude is a threshold function of the local interface height
[5]. In the mapping, h is the number of topplings in a
given avalanche at a site, x is x�, and t is xk. Using the
analytically determined values for critical exponents from
this continuum equation, good data collapse is also ob-
tained for our non-Abelian model, where no analytic solu-
tion exists at present, in both d� � 1 and d� � 2. Thus,
within our numerical accuracy, the critical exponents for
the avalanches are the same in the Abelian and non-Abelian
cases, for d� . 0. The case d� � 0 is special as the in-
terface description is no longer meaningful. It appears as
though the non-Abelian sandpile has organized large scale
structures in such a way as to maintain the universality
class, governed by a stochastic continuum equation [5], for
the avalanches. Certainly, the existence of a continuum
limit makes plausible a robust universality class includ-
ing Abelian and non-Abelian systems, although it does not
prove that the Abelian property is irrelevant to the critical
behavior of the avalanches.

We emphasize that the two systems appear to be in the
same universality class for the avalanches but are definitely
in different universality classes for the fractal spatial struc-
ture within the metastable states. Thus, measuring prop-
erties of avalanches, alone, is not sufficient to completely
determine the universality class, which must specify all the
independent critical exponents, including those describ-
ing the long-range spatial and/or temporal correlations in
self-organized critical systems. Returning to the concrete
example of earthquakes, for instance, a model of SOC in
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the earthquake universality class would not only accurately
describe the Gutenberg-Richter law for the distribution of
earthquake sizes, but also the complex spatial and tempo-
ral scaling of the earthquake intervals and fault structure
as it slowly evolves [15].
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