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Rotating Optical Soliton Clusters
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We introduce the concept of soliton clusters— multisoliton bound states in a homogeneous bulk optical
medium—and reveal a key physical mechanism for their stabilization associated with a staircaselike
phase distribution that induces a net angular momentum and leads to cluster rotation. The ringlike
soliton clusters provide a nontrivial generalization of the concepts of two-soliton spiraling, optical vortex
solitons, and necklace-type optical beams.
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Recent progress in generating spatial optical solitons in
nonlinear bulk media opens the possibility to study truly
two-dimensional self-trapping of light and interaction of
multidimensional solitary waves [1]. The robust nature of
spatial solitons that they display in interactions allows us
to draw a formal analogy with atomic physics and treat
spatial solitons as “atoms of light.” Our motivation here
is to find out whether more complex objects, viewed as
“atom clusters,” can be constructed from a certain number
of simple solitons —“atoms.” In this Letter, we describe,
for the first time to our knowledge, the basic principles
for constructing the so-called “soliton clusters,” ringlike
multisoliton bound states in a bulk media.

First, in order to discuss the formation of multisoliton
bound states in a homogeneous bulk medium, we should
recall the physics of the coherent interaction of two spatial
solitons. It is well known [1] that such an interaction
depends crucially on the relative soliton phase, say u, so
that two solitons attract each other for u � 0, and they
repel each other for u � p. For the intermediate values
of the soliton phase, 0 , u , p, the solitons undergo
an energy exchange and display an inelastic interaction.
As a result, no stationary bound states of two coherently
interacting solitons are possible in a bulk medium.

Soliton spiraling was suggested theoretically [2] and
observed experimentally [3] as a possible scenario for a
dynamical two-soliton bound state formed when two
solitons are launched with initially twisted trajectories.
However, it was clarified later [4] that the experimental
observation of the soliton spiraling was possible due to an
effectively vectorial beam interaction. As a matter of fact,
the soliton spiraling reported in Refs. [3,4] is associated
with large-amplitude oscillations of a dipole-mode vector
state [5] generated by the interaction of two initially
mutually incoherent optical beams.

In spite of the fact that no bound states exist for two
coherently interacting scalar solitons in a bulk medium, in
this Letter we demonstrate that such bound states (or ring-
like clusters) are indeed possible for a larger number of
solitons, namely, for N $ 4. The main reason for the ex-
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istence of such multisoliton states can be explained with
the help of simple physics. Indeed, let us analyze possible
stationary configurations of N coherently interacting soli-
tons in 2 1 1 dimensions. The only finite-energy struc-
tures that would balance out the phase-sensitive coherent
interaction of the neighboring solitons should possess a
ringlike geometry. However, a ringlike configuration of N
solitons will be radially unstable due to an effective tension
induced by bending of the soliton array. Thus, a ring of N
solitons will collapse, if the mutual interaction between
the neighboring solitons is attractive, or otherwise ex-
pand, resembling the expansion of the necklace beams [6].
Nevertheless, a simple physical mechanism will provide
stabilization of the ringlike configuration of N solitons, if
we introduce an additional phase on the scalar field that
twists by 2pm along the soliton ring. This phase intro-
duces an effective centrifugal force that can balance out
the tension effect and stabilize the ringlike soliton cluster.
Because of a net angular momentum induced by such a
phase distribution, such soliton clusters rotate with an an-
gular velocity which depends on the number of solitons
and phase charge m.

To build up the theory of the soliton clusters, we
consider a coherent superposition of N solitons with the
envelopes Gn�x, y, z�, n � 1, 2 . . . , N , propagating in a
self-focusing homogeneous bulk medium. The equation
for the slowly varying field envelope E �

P
Gn can be

written in the form of the nonlinear Schrödinger equation,

i
≠E
≠z

1 D�E 1 f�I�E � 0 , (1)

where D� is the transverse Laplacian and z is the propa-
gation distance measured in the units of the diffraction
length. Function f�I� describes the nonlinear properties
of an optical medium, and it is assumed to depend on the
total beam intensity, I � jEj2.

The general features of the dynamical system (1) are de-
termined by its conservation laws, or integrals of motion:
the beam power, P �

R
jEj2 dr, the linear momentum,
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L � Im
R

E�=E dr, and the angular momentum, Mez �
Im

R
E��r 3 =E� dr. For a ring of identical weakly over-

lapping solitons launched in parallel, we can calculate the
integrals of motion employing a Gaussian ansatz for a
single beam Gn,

Gn � A exp

µ
2
jr 2 rnj

2

2a2
1 ian

∂
, (2)

where rn � �xn; yn� defines the position of the soliton cen-
ter, and an is the phase of the nth beam. Then, the integrals
of motion take the form

P � pa2A2
NX

n,k�1

eYnk cosunk ,

L �
p

2
A2

NX
n,k�1

eYnk �rn 2 rk� sinunk , (3)

M � pA2
NX

n,k�1

eYnk jrn 3 rkj sinunk ,

where Ynk � 2jrn 2 rkj
2�4a2 and unk � an 2 ak. We

assume that the beams are arranged in a ring-shaped array:
rn � �R coswn; R sinwn� with wn � 2pn�N , for which
we find Ynk � 2�R�a�2 sin2�p�n 2 k��N�.

First of all, analyzing many-soliton clusters, we remove
the center-of-the-mass motion and take L � 0. Applying
this constraint to Eqs. (3), we find the conditions for the
soliton phases, ai1n 2 ai � ak1n 2 ak , which are easy
to satisfy provided the phase an has a linear dependence
on n, i.e., an � un, where u is the relative phase between
two neighboring solitons in the ring. Then, we employ
the phase periodicity condition taken in the form an1N �
an 1 2pm and find

u �
2pm

N
. (4)

In terms of the classical fields, Eq. (4) gives the con-
dition of the vanishing energy flow L � 0, because the
linear momentum L �

R
j dr can be presented through

the local current j � Im�E�=E�. Therefore, Eq. (4) de-
termines a nontrivial phase distribution for the effectively
elastic soliton interaction in the ring. In particular, for the
well-known case of two solitons �N � 2�, this condition
gives only two states with the zero energy exchange, when
m is even (u � 0, mutual attraction) and when m is odd
(u � p, mutual repulsion) [1].

For a given N . 2, the condition (4) predicts
the existence of a discrete set of allowed station-
ary states corresponding to the values u � u�m� with
m � 0, 61, . . . , 6�N 2 1�. Here two states u�6jmj� differ
only by the sign (direction) of the angular momentum,
similar to the case of vortex solitons. Moreover, for any
positive (negative) m1 within the domain p , juj , 2p,
one can find the corresponding negative (positive) value
m2 within the domain 0 , juj , p, so that both m1

and m2 describe the same cluster. For example, in the
case N � 3, three states with zero energy exchange are
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possible: u�0� � 0, u�1� � 2p�3, and u�2� � 4p�3, and
the correspondence is u�61� $ u�72�. Therefore, it is
useful to introduce the main value of u in the domain
0 # u # p, keeping in mind that all allowed states inside
the domain 0 , u , p are degenerated with respect to
the sign of the angular momentum. The absolute value
of the angular momentum vanishes at both ends of this
domain, when m � 0, for any N , and when m � N�2,
for even N . The number m determines the full phase
twist around the ring, and it plays a role of the topological
charge of a phase dislocation associated with the ring.

In order to demonstrate the basic properties of the
soliton clusters for a particular example, we select the
well-known saturable nonlinear Kerr medium with F�I� �
I�1 1 sI�21, where s is a saturation parameter. This
model supports stable �2 1 1�-dimensional solitons. First,
we apply the variational technique to find the parameters
of a single soliton described by the ansatz (2) and find
A � 3.604 and a � 1.623 for s � 0.5. Then, substituting
Eq. (2) into the system Hamiltonian, we calculate the
effective interaction potential U�R� � H�R��jH�`�j,
where H is the system Hamiltonian,

H �
Z Ω

j=Ej2 2
1
s
jEj2 1

1
s2 ln�1 1 sjEj2�

æ
dr .

As a result, for any N we find three distinct types of the
interaction potential U�R�, shown in Fig. 1 for the particu-
lar case N � 5. Only one of them has a local minimum
at finite R which indicates the cluster stabilization against
collapse or expansion.

To verify the predictions of our effective-particle ap-
proach, we perform a series of simulations of different
N-soliton rings, using the fast-Fourier-transform split-step
numerical algorithm and monitoring the conservation of
the integrals of motion. Alongside of nonstationary behav-
ior, such as breathing and radiation emitting, we find the
clusters dynamics in excellent agreement with our analy-
sis. According to Fig. 1, the effective potential is always
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FIG. 1. Examples of the effective potential U�R� for a circular
array of N � 5 solitons. Corresponding values of the topologi-
cal charge m are shown near the curves. The dynamically stable
bound state is possible for m � 1 only.
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attractive for m � 0, and thus the ring of N � 5 in-phase
solitons should exhibit oscillations and, possibly, soliton
fusion. Indeed, such a dynamics is observed in Fig. 2(a).
Although the oscillations of the ring are well described by
the effective potential U�R�, the ring dynamics is more
complicated. Another scenario of the mutual soliton inter-
action corresponds to the repulsive potential (shown, e.g.,
in Fig. 1 for the case m � 2 and u � 4p�5). In the nu-
merical simulations, the ringlike soliton array expands with
the slowing down rotation, as is shown in Fig. 2(d).

Evolution of the stationary bound state that corresponds
to a minimum of the effective potential U�R� in Fig. 1
(for m � 1) is shown in Fig. 2(b). Here the repulsive
centrifugal force balances out the soliton attraction. The
effective potential predicts the stationary state at R0 � 3
with a good accuracy, and the cluster does not change its
form while rotating during the propagation. To continue
the analogy between the soliton cluster and a rigid body,
we calculate the cluster’s moment of inertia, I , and its
angular velocity, V:

I �
Z

jEj2r2 dr, V � M�I . (5)

For the case shown in Fig. 2(b), the numerically obtained
value of the angular velocity is Vnum � p�20 � 0.157,
while the formula (5) gives the value V � 0.154. We
also perform the numerical simulations of the “excited”

FIG. 2. Different regimes of the interaction of N � 5 solitons:
(a) m � 0, collapse and fusion through oscillations; (b) m � 1,
a stationary bound state with R0 � 3; (c) m � 1, an excited
bound state with the oscillation period zperiod � 22; (d) m � 2,
the soliton repulsion. The initial radius of the ring in the cases
(a), (c), and (d) is R � 5.
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clusters, as shown in Fig. 2(c), and observed oscillations
near the equilibrium state. Such a vibrational state of the
“N-soliton molecule” demonstrates the dynamical radial
stability of the bound state in agreement with the effective-
particle approximation.

Our analysis is valid for any N , and it allows us to clas-
sify all possible scenarios of the soliton interaction in terms
of the phase jump u between the neighboring solitons in
the array. Indeed, for u � 0, the ring of N solitons col-
lapses through several oscillations. If the main value of
u belongs to the segment 0 , u # p�2, the interaction
between solitons is attractive, the value of the induced an-
gular momentum is finite, and there exists a rotating bound
state of N solitons. However, if u belongs to the segment
p�2 , u # p, the soliton interaction is repulsive and the
soliton ring expands with or without �u � p� rotation,
similar to the necklace-type beams [6]. For example, in the
case N � 3 two stationary states are possible, u � 0 and
u � 2p�3, and there exist no bound states. For N � 4
and m � 1, the value of u is p�2 and a cluster is indeed
possible, as is shown in Fig. 3.

Together with the intensity of the four-soliton cluster, in
Fig. 3 we show the phase distribution for the distances up
to 60 diffraction lengths. The initial staircase-like phase in
the ring preserves its shape, and it is a nonlinear function of
the polar angle w, similar to the phase of the necklace-ring
vector solitons with a fractional spin [7]. Note that the
phase of such a state can be described as a zeroth-order
term in the expansion of the vortex phase near the nth
soliton center:

mw � m
2pn
N

2 m
xyn 2 yxn

R2
. . . . (6)

Calculating the minimum of the potential U�R� that corre-
sponds to the soliton cluster, we find that for given m and
N ¿ 1, the stationary cluster approaches a vortex soliton
of the charge m. For example, the equilibrium radius R0

for the clusters with m � 1 is R0 � 3.8 for N � 4, and
for N $ 4 it approaches the corresponding vortex radius
R0 � 3. Furthermore, for m � 2, the soliton bound states
are possible only if u � 4p�N # p�2. This gives the
condition N $ 8, and for N $ 9 we find R0 � 5 which

FIG. 3. Rotating cluster of N � 4 solitons. The parameters
are R0 � 3.8 and V � 0.042. Phase images are scaled from
2p (black) to 1p (white).
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FIG. 4. Examples of the rotating soliton clusters: (a) N � 6
and m � 1; (b) N � 7 and m � 1; (c) N � 8 and m � 2; here
we show the exact bound state with R0 � 5.5 and the angular
velocity V � 0.092; (d) N � 9 and m � 2.

is close to the radius of a double-charged vortex. Thus,
the ringlike soliton cluster can be considered as a nontriv-
ial “discrete” generalization of the optical vortex soliton
[8]. Clusters are generally metastable, and they experi-
ence the symmetry-breaking instability. However, they can
propagate for many tenths of the diffraction length, being
also asymptotically stable in some types of nonlinear me-
dia similar to the vortex solitons [9].

In Figs. 4(a), 4(b), and 4(d) we show some examples
of the excited rotating clusters with a different number of
solitons N and initial radius R � N , while in Fig. 4(c) we
present the stationary rotating cluster of N � 8 solitons.

We stress that the staircaselike phase distribution is a
distinctive feature of the soliton cluster. The evolution of
the soliton ring with the linear phases, i.e., those presented
by the first-order terms of Eq. (6), can be associated with
complex deformation of the vortex.

More interesting structures are found for the vector
fields and incoherent interaction of solitons. For example,

FIG. 5. Examples of the vector soliton clusters.
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three coherently interacting solitons cannot form a bound
state. However, adding a single “atom” to the incoherently
coupled additional component E1 [see Fig. 5(a)] leads
to mutual trapping of all beams. Here, the incoherent
attraction balances out both the coherent repulsion, as in
the case of multipole vector solitons [10], and the centrifu-
gal force induced by a net angular momentum. This
leads to the cluster rotation similar to the two-lobe ro-
tating “propeller” soliton [11]. In Fig. 5(b), we show the
five-lobe analog of the necklace-ring vector solitons
recently discussed in Ref. [7]. Unlike the necklace-ring
solitons, the vector cluster rotates and undergoes internal
oscillations as it propagates.

In conclusion, we have revealed a key physical mecha-
nism for stabilizing multisoliton bound states in a bulk
medium in the form of rotating ringlike clusters. Such
soliton clusters can be considered as a nontrivial general-
ization of the important concepts of the two-soliton spiral-
ing, optical vortex solitons, and necklace scalar beams, and
they provide an example of the next generation of multiple
soliton-based systems operating entirely with light. We
believe that the basic ideas presented in this Letter will
be useful for other applications, such as the beam dynam-
ics in plasmas [12] and the Skyrme model of a classical
field theory [13], and they can be also generalized to the
inhomogeneous systems (such as the Bose-Einstein con-
densates in a trap [14]).

The authors are indebted to M. Segev and M. Soljaĉić
for comments and E. A. Ostrovskaya for help and a critical
reading of this manuscript.
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