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Nonperturbative Coherent Population Trapping: An Analytic Model

V. Delgado and J. M. Gomez Llorente
Departamento de Física Fundamental II, Universidad de La Laguna, 38205-La Laguna, Tenerife, Spain

(Received 23 July 2001; published 23 January 2002)

Coherent population trapping is shown to occur in a driven symmetric double-well potential in the
strong-field regime. The system parameters have been chosen to reproduce the 02 $ 31 transition of
the inversion mode of the ammonia molecule. For a molecule initially prepared in its lower doublet we
find that, under certain circumstances, the 31 level remains unpopulated, and this occurs in spite of the
fact that the laser field is resonant with the 02 $ 31 transition and intense enough so as to strongly
mix the 01 and 02 ground states. This counterintuitive result constitutes a coherent population trapping
phenomenon of nonperturbative origin which cannot be accounted for with the usual models.
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Quantum dynamics in symmetric double-well potentials
is important to understand numerous physical and chemi-
cal processes. A typical example is the tunneling dynam-
ics of the hydrogen atoms in the inversion mode of the
ammonia molecule, which is responsible for the splitting
of the vibrational levels [1]. Other examples include elec-
tron tunneling in quantum semiconductor structures [2] or
intermolecular proton transfer processes [3].

In recent years there has been increasing interest in
quantum coherence phenomena displayed by atomic and
molecular systems irradiated with strong laser fields [4].
Coherent external fields induce quantum interference ef-
fects such as coherent population trapping [5], electro-
magnetically induced transparency [6], or lasing without
inversion [7]. In particular, in connection with the time
evolution of a quantum system in a symmetric double-well
potential it has been shown that under certain circum-
stances an intense laser field can induce coherent tunneling
suppression [8]. In this Letter we show that such a system
can also exhibit coherent population trapping. This popu-
lation trapping phenomenon is nonperturbative in nature
and cannot be accounted for with the usual models. We
propose an analytically solvable nonperturbative model
which accounts correctly for the essential features of the
observed phenomenon.

Specifically, we consider a symmetric quartic double-
well potential strongly driven by a linearly polarized laser
field. After appropriate scaling the corresponding dimen-
sionless Hamiltonian reads

H �
P2

2
2

X2

4
1

X4

64a
2 lX cos�t� , (1)

where the coupling constant l is proportional to the laser
field amplitude E0 and t � vLt with vL being the laser
frequency. The dimensionless parameter a, which gives
approximately the number of doublets below the barrier
top, has been chosen to be 1.735. This value reproduces,
to a good approximation, the effective potential involved
in the inversion mode of the ammonia molecule. The laser
frequency has been tuned to the 02 $ 31 vibrational tran-
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sition and its intensity satisfies l�01jXj02� � E0m12 �
0.35pvL, where m12 is the dipole matrix element between
the ground states j01� and j02�, and all quantities are
assumed to be dimensionless.

Transitions 01 $ 02 and 02 $ 31 are dipole allowed,
whereas the 01 $ 31 transition is forbidden. Therefore,
in the weak-field regime (E0m12�vL, D0�vL ø 1 with
D0 being the energy splitting of the lower doublet) and
for a laser field tuned to the 02 $ 31 transition, one ex-
pects the upper level to be populated or not depending on
whether the molecule is initially prepared in the j02� or
j01� state, respectively. The laser intensity considered
above, however, corresponds to the strong-field regime
(E0m12 � vL). Under these circumstances the two lower
levels become strongly mixed and the j02� state becomes
highly populated. One then would expect the upper level
to be populated irrespective of the fact that the molecule is
initially prepared in the j02� or j01� state.

Figure 1a shows the evolution of the populations for an
ammonia molecule initially prepared in its ground state
j01�. These results have been obtained numerically by
direct integration of the Schrödinger equation. We have
included the 20 lowest-lying levels, which guarantees con-
vergence. As is apparent from the figure, the upper level
j31� remains always unpopulated [curve (3)], and this oc-
curs despite the fact that the j02� state becomes highly
populated [curve (2)] and the laser field directly connects
this latter state with the upper level. This figure also shows
that the total population in the lower doublet remains al-
ways close to unity [curve (1)]. Thus, under the action of
the driving field the initial population oscillates rapidly be-
tween j01� and j02� while it remains trapped in the lower
doublet. This counterintuitive result represents a coherent
population trapping phenomenon of nonperturbative nature
which cannot be accounted for with the usual models.

The case of an ammonia molecule prepared initially in
j02� is considered in Fig. 1b. This figure shows the time
evolution of both the population of the upper level j31�
[curve (3)] and the total population of the lower doublet
[curve (1)]. As before the initial population oscillates very
© 2002 The American Physical Society 053603-1
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FIG. 1. Populations vs t � vLt for an ammonia molecule
initially prepared in (a) the j01� state and (b) the j02� state.
Curve (1) gives the total population of the lower doublet, curve
(2) gives the population of the j02� state, and curve (3) gives
the population of the upper level j31�.
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rapidly between j02� and j01� (not shown for clarity).
Now, however, a periodic population transfer between the
lower doublet and the upper level takes place on a different
time scale. In fact, apart from the rapid oscillations of the
upper level population (which originates from population
transfers to levels adjacent to j31�, as a detailed numeri-
cal analysis reveals), the behavior of the system in this non-
perturbative regime resembles that of the corresponding
weak-field regime.

The above results pose two intriguing questions:
(i) Why does the population become trapped when the
molecule is initially prepared in its ground state? (ii) Why
does the system behave essentially in a similar way both
in the nonperturbative strong-field regime and in the weak-
field regime? In what follows, we propose an analytic non-
perturbative three-level model which can give an answer
to these questions.

The most directly involved states, j01�, j02�, and j31�,
will be denoted j1�, j2�, and j3�, respectively. The energy
splitting of the lower doublet is D0, and v3 denotes the
energy of the upper level. The system Hamiltonian is

H �
D0

2
�s22 2 s11� 1 v3s33 2 V12 cos�t� �s12 1 s21�

2 V23 cos�t� �s23 1 s32� , (2)

where h̄ � 1, sij � ji� � jj, and Vij � E0mij with mij

being the dipole matrix elements between ji� and j j�.
The most rapidly oscillating terms can be absorbed by

performing the unitary transformation

U�t� � exp

∑
2i

V12

vL
�s12 1 s21� sin�t� 1 is33t

∏
, (3)

which leads to the transformed Hamiltonian
H 0 � �D0�2� �cos	2f�t�
 �s22 2 s11� 1 i sin	2f�t�
 �s21 2 s12��
1 �v3 2 vL�s33 2 V23 cos�t� �e2it�cos	f�t�
s23 2 i sin	f�t�
s13� 1 H.c.� , (4)
with f�t� � �V12�vL� sin�t�. Next, we expand the
time-dependent coefficients of H 0 in Fourier series, which
allows us to separate the Hamiltonian into a dominant con-
stant contribution H 0

0 and a time-dependent part DH 0�t�.
Then, substitution of H 0 into the evolution operator of
the system shows that when the driving field is quasi-
resonant with the j2� $ j3� transition and both the energy
difference D0 and the Rabi frequency V23 are small in
comparison with the laser frequency, DH 0�t� becomes a
small, rapidly oscillating perturbation which can be safely
neglected. More generally, it can be shown that in the
strong-field regime (V12�vL * 1) and for a quasiresonant
laser field, DH 0�t� becomes negligible whenever D0�vL,
V23�vL ø

p
V12�vL. (In our case, D0�vL � 3.28 3

1024, V23�vL � 0.23, and V12�vL � 1.10.) Under
these circumstances, the dynamical evolution of the sys-
tem is governed by the Hamiltonian
H 0 �
D

R
0

2
�s22 2 s11� 1 �v3 2 vL�s33

2
V

R
23

2
�s23 1 s32� , (5)

where the renormalized energy difference D
R
0 and Rabi

frequency V
R
23 are field-dependent quantities defined as

D
R
0 � D0J0�2V12�vL� and V

R
23 � 2vL�V23�V12� 3

J1�V12�vL�, with Jn being the nth-order Bessel function.
The Schrödinger equation associated with the above
Hamiltonian can be readily solved analytically, and after
transforming back one obtains the following nonperturba-
tive general solution:

jC�t�� � C1�t� j1� 1 C2�t� j2� 1 C3�t� j3� , (6)

where
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C1�t� � C0
1�t� cosf�t� 1 iC0

2�t� sinf�t� , (7a)

C2�t� � C0
2�t� cosf�t� 1 iC0

1�t� sinf�t� , (7b)

C3�t� � C0
3�t�e2it , (7c)

and the C0
i�t�, which are the probability amplitudes asso-

ciated with the Hamiltonian (5), are given by

C0
1�t� � C0

1�0�ei�DR
0 �2vL�t, (8a)

C0
2�t� �

Ω
C0

2�0� cos

µ
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2vL
t

∂
1

i
VR 	C0

2�0�dR 1 C0
3�0�VR

23


3 sin

µ
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2vL
t

∂æ
e2�i�2vL� �dR1D

R
0 �t , (8b)

C0
3�t� �

Ω
C0

3�0� cos

µ
VR

2vL
t

∂
2

i
VR

	C0
3�0�dR 2 C0

2�0�VR
23


3 sin

µ
VR

2vL
t

∂æ
e�i�2vL � 	dR22�v32vL�
t, (8c)

where dR � v3 2 D
R
0 �2 2 vL is the renormalized de-

tuning and VR �
p

�VR
23�2 1 �dR�2 is the renormalized

generalized-Rabi frequency. The physical content of the
above solution becomes more transparent by considering
the extended Hilbert space of t-periodic state vectors [9].
In fact, the basis �ji0�t��� with ji0�t�� � U1�t� ji� turns
out to be the natural basis to express jC�t��:

jC�t�� � C0
1�t� j10�t�� 1 C0

2�t� j20�t�� 1 C0
3�t� j30�t�� .

(9)

As this expression reflects, the dynamical evolution of the
probability amplitudes corresponding to the renormalized
�ji0�t��� states is governed by the Hamiltonian H 0 of
Eq. (5). Such a Hamiltonian has the same form as the
original Hamiltonian (2) in the limit V12 ! 0 (in the ro-
tating wave approximation and in the frame rotating with
the laser frequency). Therefore, the theory is renormal-
izable in the sense that when analyzed in terms of the
�ji0�t��� states, the nonperturbative effects of the radiation
field on the dynamical evolution of the system can be ab-
sorbed into the renormalized splitting D

R
0 and Rabi fre-

quency V
R
23, in such a way that the system evolves obeying

the same Hamiltonian as that of the weak-field regime in
the rotating wave approximation. In fact, the general solu-
tion (9) is valid both in the (perturbative) weak-field regime
(V12�vL, D0�vL ø 1) and in the (nonperturbative)
strong-field regime (V12�vL * 1).

As Eq. (8a) shows, under the action of the coherent ex-
ternal field, the j10�t�� state decouples and all the popula-
tion that is initially in state j1� becomes trapped in j10�t��.
For a system prepared initially in its ground state this im-
plies, in particular, that the upper level j3� remains always
unpopulated. This occurs in spite of the fact that the initial
population oscillates very rapidly between the j1� and j2�
levels, and the latter is directly coupled to j3� via a laser
field tuned to the 2 $ 3 transition. This is a coherent popu-
lation trapping phenomenon of nonperturbative origin.
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On the other hand, when the molecule is prepared in
t � 0 in state j2�, the population difference between the
upper level and the lower doublet oscillates in time as

W �t� � 2cos

µ
VR

vL
t

∂
2 2

µ
dR

VR

∂2

sin2
µ

VR

2vL
t

∂
. (10)

Figure 2 shows the theoretical predictions of our model
for the same situations considered in Fig. 1. Figure 2a
corresponds to an ammonia molecule prepared initially in
its ground state. In this case, the populations rii�t� of the
molecular states �ji�� are predicted to be

r22�t� � sin2
µ

V12

vL
sint

∂
, r33�t� � 0 , (11)

and r11�t� � 1 2 r22�t�. Thus, the population of the
lower doublet, which under these circumstances coincides
with that of the renormalized state j10�t��, remains always
equal to one [curve (1)] and the upper level remains un-
populated [curve (3)], in good agreement with the numeri-
cal results (dotted lines). Figure 2a also compares the
analytical result for the population of level j2� [curve (2)]
with the corresponding exact numerical result.

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500
τ

0.0

0.2

0.4

0.6

0.8

1.0
b

a

2

3

1

3

1

FIG. 2. Theoretical predictions for the same situations consid-
ered in Fig. 1. For comparison purposes, along with the analyti-
cal results (solid lines) the corresponding exact numerical results
have been plotted again (dotted lines).
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On the other hand, Fig. 2b shows the evolution of the
populations for a molecule prepared at t � 0 in state j2�.
In this case the population of the lower doublet coincides
with that of the renormalized state j20�t�� and, according
to our model, oscillates in time as [curve (1)]

r11�t� 1 r22�t� � cos2
µ

VR

2vL
t

∂
1

µ
dR

VR

∂2

sin2
µ

VR

2vL
t

∂
,

(12)

while the population of the upper level behaves as r33�t� �
1 2 r11�t� 2 r22�t� [curve (3)]. These results are in good
qualitative agreement with the corresponding numerical
results. The main discrepancy between Figs. 2b and 1b
comes from the rapid oscillatory behavior of the upper
level population. As already mentioned, it can be shown
that this discrepancy, which decreases as the laser intensity
does, originates from population transfers to levels adja-
cent to the 31 level, which now have a more significant
contribution. In fact, if the numerical problem is restricted
to the three levels most directly involved, then numerical
and analytical results become indistinguishable on the
scale of the figures. Our three-level model already cap-
tures the essential features of the system and enables us
to understand the dominant behavior of the populations in
terms of a nonperturbative coherent population trapping
phenomenon. The upper level remains unpopulated when
the molecule is initially prepared in its ground state be-
cause such configuration corresponds to an initial prepa-
ration in the trapping state j10�t��.

Next, we analyze the influence of dissipation on the co-
herent population trapping phenomenon previously found.
Spontaneous emission effects can be conveniently incor-
porated by assuming that the upper level decays radia-
tively into state j2� with an effective spontaneous emission
rate G. The dynamics of the system is now described in
terms of the density operator r�t� which obeys the usual
master equation (in which we have retained nonsecular
terms). By performing the unitary transformation (3) one
obtains a transformed master equation for the density op-
erator r0�t� � U�t�r�t�U1�t�, which, within the range of
validity of our model, leads to the following equations of
motion governing the time evolution of populations and
coherences:

�r0
11 �

G

2
�1 2 L0�r0

33 , (13a)

�r0
22 � iVR

23�r0
32 2 r0

23� 1
G

2
�1 1 L0�r0

33 , (13b)

�r0
12 � iDR

0 r0
12 2 iVR

23r0
13 , (13c)

�r0
13 � i�dR 1 DR

0 �r0
13 2 iVR

23r0
12

2
G

2

µ
r0

13 2
1
2

L2r0
31

∂
, (13d)
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�r0
23 � idRr0

23 2 iVR
23�r0

22 2 r0
33�

2
G

2

µ
r0

23 2
1
2

L2r0
32

∂
, (13e)

with Ln � Jn�2V12�vL� �n � 0, 2�; r
0
ij � �ijr0�t� jj� �

�i0�t�jr�t� jj0�t��; and r
0
ji � r

0�
ij .

As Eq. (13a) reflects, whenever the Rabi frequency V12
coupling the two lower-lying states is nonzero, the upper
state j3� remains unpopulated in the steady state regard-
less of the initial preparation. As a consequence, in the
steady state the molecular population becomes trapped in
the lower doublet and the fluorescence from level j3� van-
ishes. This behavior, which is in sharp contrast with the
well-known behavior of the system in the V12 � 0 limit,
is typical of systems exhibiting coherent population trap-
ping and has its origin in quantum interferences involving
the two lower-lying levels [5].

It is not hard to see from the above equations that, for
arbitrary external fields (such that V

R
23 fi 0), the steady-

state population of j20�t�� also vanishes so that all of the
population becomes trapped in the steady state in j10�t��
irrespective of the initial preparation.

In conclusion, we have shown that coherent population
trapping can occur in the nonperturbative regime and have
proposed an analytically solvable nonperturbative three-
level model which enables us to understand the observed
phenomenon. Although we have presented results for only
one field intensity, essentially the same behavior, in good
agreement with our analytic model, occurs in the parameter
range 0.1p & V12�vL & 0.5p. A detailed account of the
model will be given elsewhere.
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