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Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam
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We explain that, unlike the spin angular momentum of a light beam which is always intrinsic, the
orbital angular momentum may be either extrinsic or intrinsic. Numerical calculations of both spin and or-
bital angular momentum are confirmed by means of experiments with particles trapped off axis in optical
tweezers, where the size of the particle means it interacts with only a fraction of the beam profile. Orbital
angular momentum is intrinsic only when the interaction with matter is about an axis where there is no
net transverse momentum.
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Introduction.—Some 65 years ago Beth [1] demon-
strated that circularly polarized light could exert a torque
upon a birefringent wave plate suspended in the beam
by the transfer of angular momentum. The angular mo-
mentum associated with circular polarization arises from
the spin of individual photons and is termed spin angular
momentum.

More recently, Allen et al. [2] showed that for beams
with helical phase fronts, characterized by an exp�ilf�
azimuthal phase dependence, the orbital angular momen-
tum in the propagation direction has the discrete value of
lh̄ per photon. Such beams have a phase dislocation on the
beam axis that in related literature is sometimes referred to
as an optical vortex [3]. In general, any beam with inclined
phase fronts carries orbital angular momentum about the
beam axis which, when integrated over the beam, can be
an integer or noninteger [4,5] multiple of h̄.

In this paper, we experimentally examine the motion of
particles trapped off axis in an optical tweezers and are able
to associate specific aspects of the motion with the distinct
contributions of spin and orbital angular momentum of the
light beam. The interpretation of the experiments, when
combined with a numerical calculation of the spin and or-
bital contributions derived from established theory, allows
a distinction to be made between the intrinsic and extrinsic
aspects of the angular momentum of light.

Angular momentum of a light beam.—The cycle-
averaged linear momentum density, p, and the angular
momentum density, j, of a light beam may be calculated
from the electric, E, and magnetic, B, fields [6]:

p � ´0�E 3 B� , (1)

j � ´0�r 3 �E 3 B�� � r 3 p . (2)

Equation (2) encompasses both the spin and orbital angular
momentum density of a light beam.

Within the paraxial approximation, the local value of the
linear momentum density of a light beam is given by [2]
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where u � u�r, f,z� is the complex scalar function de-
scribing the distribution of the field amplitude. Here s

describes the degree of polarization of the light; s � 61
for right- and left-hand circularly polarized light, respec-
tively, and s � 0 for linearly polarized.

The cross product of this momentum density with the
radius vector r � �r, 0, z� yields an angular momentum
density. The angular momentum density in the z direction
depends upon the F component of p, such that

jz � rpf . (4)

The final term in Eq. (3) depends upon the polarization but
is independent of the azimuthal phase and, consequently,
this term may be linked directly to the spin angular mo-
mentum. The first term in Eq. (3) depends upon the phase
gradient and not the polarization, and so gives rise to the
orbital angular momentum.

For many mode functions, u, such as for circularly po-
larized Laguerre-Gaussian modes, Eqs. (3) and (4) can be
evaluated analytically such that the local angular momen-
tum density in the direction of propagation is given by [2]
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The angular momentum integrated over the beam is readily
shown to be equivalent to sh̄ per photon for the spin
and lh̄ per photon for the orbital angular momentum [2],
that is

Jz � �l 1 s�h̄ . (6)

A theoretical discussion of the behavior of local momen-
tum densities has been published elsewhere [7], and it
should be noted that the local spin and orbital angular
momentum do not have the same functional form.
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As is well known, spin angular momentum does not
depend upon the choice of axis and so is said to be in-
trinsic. The angular momentum which arises for any
light beam from the product of the z component of lin-
ear momentum about a radius vector, may be said to be
an extrinsic because its value depends upon the choice of
calculation axis.

Berry showed [8] that the orbital angular momentum
of a light beam does not depend upon the lateral position
of the axis and can therefore also be said to be intrinsic,
provided the direction of the axis is chosen so that the
transverse momentum is zero. When integrated over the
whole beam the angular momentum in the z direction is

Jz � ´0

ZZ
dx dy r 3 �E 3 B� . (7)

If the axis is laterally displaced by r0 � �r0x, r0y� it is easy
to show that the change in the z component of angular
momentum is given by

DJz � �r0x 3 Py� 1 �r0y 3 Px�

� r0x´0

ZZ
dx dy �E 3 B�y (8)

1 r0y´0

ZZ
dx dy �E 3 B�x .

The angular momentum is intrinsic only if DJz equals
zero for all values of r0x and r0y . This condition is
satisfied only if z is stipulated as the direction for
which the transverse momenta ´0

RR
dx dy �E 3 B�x and

´0

RR
dx dy �E 3 B�y are exactly zero.

For Laguerre-Gaussian light beams truncated by aper-
tures, Eqs. (3) and (8) can only be evaluated numerically.
Nevertheless, for all apertures, of whatever size or posi-
tion, the spin angular momentum remains sh̄ irrespec-
tive of the choice of calculation axis and so is, as
expected, intrinsic; see Fig. 1. Any beam with a helical
phase front apertured symmetrically about the beam axis
has zero transverse momentum and, consequently, an
orbital angular momentum of lh̄ per photon, independent
of the axis of calculation. The orbital angular momentum
of the light beam may therefore be described as intrinsic.
However, when the beam is passed through an off-axis
aperture, its transverse momentum is nonzero and the
orbital angular momentum depends upon the choice of
calculation axis and so must be described as extrinsic;
see Fig. 1. An interesting result occurs when the orbital
angular momentum of the apertured beam is calculated
about the original beam axis. Even though the transverse
momentum is nonzero, the orbital angular momentum
remains lh̄ per photon because r0x and r0y are both zero.
However, it does not follow that the angular momentum of
the apertured beam is intrinsic as the result does depend
upon the choice of calculation axis. When any beam
is apertured off axis, it is simpler and more accurate to
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understand its interaction with particles by considering the
components of p in the x-y plane. For beams with helical
phase fronts, these transverse components are in the F
direction with respect to the beam axis. It is this distinc-
tion between spin and orbital angular momentum which
gives rise to differences in behavior for the interaction of
light with matter.

The transfer of spin and orbital angular momentum to
small particles.—The interaction of small particle with the
angular momentum of a light beam has been investigated
by a number of groups with the use of optical tweezers.
Usually implemented by use of a high numerical-aperture
microscope, optical tweezers rely on the gradient force to
confine a dielectric particle near the point of highest light
intensity [9]. For particles trapped on the beam axis, both
the spin and orbital angular momentum have been shown
to cause rotation of birefringent [10] and absorptive [11]
particles, respectively. For absorbing particles, both spin
and orbital angular momenta are transferred with the same
efficiency so that the applied torque is proportional to the
total angular momentum [12], that is �s 1 l�h̄ per photon.

In this present work we also use optical tweezers, but in
this instance the particles are trapped away from the beam
axis. This allows us to demonstrate the difference between
particle interactions with spin and orbital angular momen-
tum. The experimental configuration is shown in Fig. 2.
Our optical tweezers are based on a 1.3 numerical aperture,
3100 objective lens, configured with the trapping beam di-
rected upwards, which allows easier access to the sample
plane. This beam is generated from the 100 mW output of
a commercial Nd:YLF laser transformed, using a computer
generated hologram, to give a Laguerre-Gaussian mode of
approximately 30 mW. The beam is circularly polarized,
s � 61 with a high azimuthal mode index, l � 68. The
sign of the spin or the orbital angular momentum may be
reversed by the insertion of a half–wave plate or a Dove
prism, respectively [13]. The radius of maximum intensity,
rmax of a Laguerre-Gaussian mode is given by [14],

rmax �

s
zRl

k
, (9)

where zR is the Rayleigh range of the beam. Even un-
der the tight focusing associated with optical tweezers, the
peak intensity ring of a Laguerre-Gaussian mode of high
index l may be made several mm in diameter and, conse-
quently, be much larger than the particles it is attempting
to trap.

It is not surprising, for such conditions, that we observe
the particles to be confined by the gradient force at the ra-
dius of maximum light intensity and not on the beam axis.
When a birefringent particle such as a calcite fragment is
trapped, and circularly polarized light is converted to lin-
ear, we observe that the particle spins about its own axis.
The sense of rotation is governed by the handedness of the
circular polarization.
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FIG. 1. Numerically calculated local spin and orbital angular momentum densities in the direction of propagation for a l � 8 and
s � 1 Laguerre-Gaussian mode. A positive contribution is shown in white, gray represents zero, and black a negative contribution;
the black spot marks the axis of the original beam, the white cross marks the axis about which the angular momenta are calculated
and, where appropriate, the black circle marks the position of a soft edged aperture. Note that the spin angular momentum is
equivalent to s h̄ per photon irrespective of the choice of aperture or calculation axis, whereas the orbital angular momentum is only
l h̄ per photon if the aperture or calculation axes coincide with the axis of the original beam.
FIG. 2. The optical tweezers use a high-order Laguerre-
Gaussian beam to trap the particle in the region of maximum
light intensity, away from the beam axis. The circularly polar-
ized Laguerre-Gaussian beam is generated using a quarter-wave
plate and a hologram. The sense of the orbital and spin angular
momentum can be reversed by the inclusion of a half-wave
plate or a Dove prism, respectively.
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For small particles the force arising from the light scat-
tering, the momentum recoil force, becomes important.
For a tightly focused Laguerre-Gaussian mode, the domi-
nant component of the scattering force lies in the direction
of beam propagation. The gradient force again constrains
the particle to the annulus of maximum beam intensity.
However, as the intensity distribution is cylindrically
symmetric, the particle is not constrained azimuthally.
Because the particle is trapped off the beam axis, the in-
clination of the helical phase fronts and the corresponding
momentum result in a tangental force on the particle. We
observe that a small particle, while still contained within
the annular ring of light, orbits the beam axis in a direction
determined by the handedness of the helical phase fronts;
see Fig. 3. We conclude that the larger calcite and small
particles are interacting with intrinsic spin and extrinsic
orbital angular momentum, respectively. In principle, it
should be possible to observe both the orbital and spin
angular momenta acting simultaneously upon the same
small birefringent particle. However, our observations
have been inconclusive as birefringent particles small
enough for the scattering force to induce a rotation about
the beam axis are typically too small to see whether they
are spinning about their own axis.

This orbital and spin behavior is entirely consistent with
the formulation summarized in Eqs. (7) and (8). If one
considers the cross section of an off-axis trapped particle
to play the rôle of an aperture, then we see that the intrinsic
spin of the angular momentum creates a torque about the
053601-3
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FIG. 3. Successive video frames showing particles trapped
near the focus of an l � 8 and s � 1 Laguerre-Gaussian
mode. The left column shows particles of �1 mm diam. These
particles are sufficiently small to be subject to a well-defined
scattering force, allowing them to interact with the orbital angu-
lar momentum of the beam. They are set in motion, orbiting the
beam axis at a frequency of �1 Hz. The right column shows a
calcite fragment with a length of �3 mm and a width of about
�1.5 mm, which is large enough not to interact detectably with
the beam’s orbital angular momentum. However, due to its
birefringence it interacts with the spin angular momentum of
the beam and is set spinning about its own axis at �0.3 Hz.
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particle’s own axis, causing it to spin. A calculation of the
particle’s angular momentum about an arbitrary axis shows
a clear distinction between the intrinsic angular momentum
associated with its spinning motion and the extrinsic angu-
lar momentum associated with its orbital motion. In this
situation, orbital angular momentum is better described as
the result of a linear momentum component directed at a
tangent to the radius vector.

Unlike the spin angular momentum of a light beam
which is always intrinsic, the z component of the orbital
angular momentum can be described as intrinsic only if
the z direction can be stipulated such that the transverse
momentum integrated over the whole beam is zero. If an
interaction is with only a fraction of the beam cross sec-
tion, then the orbital angular as measured about the original
axis is extrinsic.

L. Allen is pleased to thank the Leverhulme Trust for
its support. M. J. Padgett thanks the Royal Society for its
support. A. T. O’Neil is supported by the EPSRC.

[1] R. E. Beth, Phys. Rev. 50, 115 (1936).
[2] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.

Woerdman, Phys. Rev. A 45, 8185 (1992).
[3] I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Com-

mun. 119, 604 (1995).
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