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We present an analysis of the thermodynamic properties of small transition-metal clusters and show
how the commonly used indicators of phase transitions such as peaks in the specific heat or magnetic
susceptibility can lead to deceptive interpretations of the underlying physics. The analysis of the distri-
bution of zeros of the canonical partition function in the whole complex temperature plane reveals the
nature of the transition. We show that signals in the magnetic susceptibility at positive temperatures have
their origin at zeros lying at negative temperatures.
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Experiments on Bose-Einstein condensation [1–3] or
the experimental determination of structural, electronic,
and thermal properties of clusters [4–6] are prototypes of
physical investigations of transitions in small systems. In-
tuitively phase transitions in such systems do exist. While
the atomic structure at low temperatures is more or less
rigid, at high temperatures the atoms move resembling a
liquid drop. But the theoretical description is complicated
since the thermodynamic functions of clusters do not show
singularities at the transition point. Phase changes are seen
in blurred slopes or humps. To have the physical concept
of phase transitions and their properties of bulk material in
mind and apply it to interpret the smooth thermodynamic
functions for small systems, e.g., clusters, of a given size
accordingly and assign a “first” or “second” order phase
transition may be inconclusive. Despite the ambiguity in
these signals, it is still reasonable to attribute an order to
phase changes in small systems because fundamental dif-
ferences between the kinds of the transitions such as the
existence of metastabilities for first-order transitions still
persist. Therefore, various approaches for the classifica-
tion of phase transitions in small systems have been devel-
oped which have to coincide in the thermodynamic limit
and should be mathematically rigorous.

Gross et al. have proposed a microcanonical treatment,
where phase transitions are distinguished by the curvature
of the entropy S�E� [7,8]. If S�E� has a convex intruder,
i.e., the microcanonical caloric curve T�E� shows a back-
bending, the phase transition is assumed to be of first order.
Franzosi et al. have started by investigating the topology of
the potential energy surface and established a connection
between topological changes and phase transitions [9,10].
However, they are not able to determine the order of the
phase transition. Recently, we have proposed a classifi-
cation scheme based on the distribution of zeros of the
analytically continued canonical partition function Z�B�,
with B � b 1 it�b � 1�T�, in the complex tempera-
ture plane [11–14].

The basic principle of the description of phase transi-
tions by the zeros of the partition function is the product
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theorem of Weierstrass and the theorem of Mittag-Leffler
which relate integral functions to their zeros [15]. Apply-
ing these theorems, the canonical partition function can be
written as
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We assume the zeros to lie on a line with a density
f�t� � ta and to have a crossing angle n with the plum-
met on the real temperature axis �g � tann�. Together
with the imaginary part t1 of the first zero B1 this leads
to a distinct classification of phase transitions in small sys-
tems. For zeros perpendicular to the real axis with equal or
increasing spacing, i.e., a # 0 and g � 0, the transition
is of first order, for 0 , a , 1 and arbitrary g as well as
for g fi 0 and a # 0 of second order (see Fig. 1). The
imaginary part t1 reflects the “discreteness” of the sys-
tem. Thus, in the thermodynamic limit we have t1 ! 0
and our scheme coincides with the scheme given by Gross-
mann and co-workers [16].

We utilize small magnetic clusters exposed to an ex-
ternal magnetic field in order to show how the common
treatment of phase transitions in small systems such as the
identification by humps of response functions eventually
leads to misinterpretations of physical properties.

Metal clusters have the intriguing property that they oc-
cur as different isomers with almost equal ground state
energies but very different magnetic moments and differ-
ent geometries [17,18]. For simplicity, we consider in our
model two isomers with magnetic moments m1 � 1mB

and m2 � 10mB, and their ground state energy difference
DE � E0�2� 2 E0�1� � 1 meV. In the presence of an ex-
ternal magnetic field H pointing in the z direction the par-
tition function reads
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FIG. 1. Examples of distributions of zeros for first and second
order phase transitions along with the corresponding specific
heat, calculated as functions of the zeros.
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We have assumed equal vibrational energies. The two
isomers can be identified by their average magnetic mo-
ment �m� which are calculated by standard differentiation
of Eq. (3) with regard to the magnetic field,

�m� � b21≠H lnZ�b� �
X

i

pi�mi � (4)

�
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where pi is the probability of finding isomer i.
This system is driven by two effects, the entropy in-

crease due to thermal excitation and the alignment of the
magnetic moments along the magnetic field. For low tem-
peratures, there is a transition from �m� 	 1 to �m� 	 10
at about 1.1 mG, as shown in Fig. 2. At higher tempera-
tures, the magnetic field does not align the magnetic mo-
ments along the field resulting in a general decrease of �m�.

Figure 3(a) shows the occupation probability of isomer
1 �m1 � 1mB� for different magnetic fields. At low mag-
netic fields, the lower energetic isomer is predominantly
occupied, while higher magnetic fields lower the ground
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FIG. 2. Contour plot of the average magnetic moment �m�
versus temperature T and magnetic field H . Note the nonlinear
scale.
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state energy of isomer 2 �m2 � 10mB� and therefore the
occupation is reversed. With increasing temperature the
probabilities become equal. The contributions of both iso-
mers to the total average magnetic moment �m� are plotted
in Figs. 3(b) and 3(c). At low temperatures, small mag-
netic fields align the magnetic moment of isomer 1H. With
increasing temperature the mobility of the atoms is raised
which decreases the contribution of isomer 1 to �m�.

From Figs. 2 and 3, we can infer that for temperatures
T & 1 K and an increasing magnetic field a transition with
a coexistence phase occurs (for coexistence in small sys-
tems see [19–22]). As the magnetic field is raised the con-
tributions of both isomers to �m� are inverted which causes
a bimodal probability distribution P�mz� of the order pa-
rameter mz . The response of the system is observable as
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FIG. 3. Plots of physical properties versus temperature T for
H � 0.1, 0.5, 1.0, and 2.0 mG. (a) Probability for isomer 1.
(b) Contribution of isomer 1 and (c) of isomer 2 to the total
average magnetic moment �m�. (d) Magnetic susceptibility x .
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FIG. 4. The absolute value of the average magnetic moment j�m�j in the complex temperature plane for (a) 0.1 mG, (b) 1.2 mG,
and (c) 2.0 mG.
a hump in the susceptibility x � ≠H�m� at about 30 K for
H � 2.0 mG [see Fig. 3(d)].

However, at temperatures about 10–1000 K, the situ-
ation is a bit more complicated. With increasing tem-
perature and at “intermediate” fields �H & 1.0 mG� the
contribution of isomer 1 decreases, while the contribution
of isomer 2 to �m� is raised up to 1mB. This also results in
humps of the susceptibility x, but P�mz� is unimodal be-
cause the magnetic moments of the 10mB isomer are less
aligned along the magnetic field. Since the first effect can
be regarded as pure magnetic field driven, it is not clear
whether one should attribute the humps for H & 1.0 mG
to a magnetic field effect or to a temperature effect. The
“coexistence” observable in the contributions of both iso-
mers to �m� is fundamentally different; it would be more
correct to associate this with thermal excitation.

Magnetic clusters are finite spin systems. Such systems,
if their energy has an upper limit, can show an inverse
change of entropy with respect to energy corresponding
to negative inverse temperatures, b � 1�T � ≠ES�E� �
≠E lnV�E� with V�E� being the density of states. Note
that negative temperatures are attributed to the spin tem-
perature of the system. Negative temperatures have been
measured, e.g., in LiF crystals [23–25] by decoupling the
spin temperature from the kinetic energy contribution. The
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FIG. 5. Contour plot of the magnetic susceptibility x over the complex temperature plane: (a) for H � 0.5 mG; (b) displays a
close-up of ca. one-tenth of this plane; and (c) for H � 2.0 mG. The white crosses indicate the location of the poles of x . The
arrows are a guide to the eye and visualize the “radiation” of the poles.
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spin-lattice relaxation time is large enough (up to hours) to
assure that the spin system is thermally stable and thus can
come to equilibrium [26].

Obviously, the above presented indicators of phase tran-
sition thwart the classification and to some extent the dis-
tinction between different phase transitions. Within the
microcanonical ensemble, the occurrence of negative tem-
peratures arises naturally because T is an internal parame-
ter in contrast to the canonical ensemble. We consider
the positive and negative inverse temperatures within the
canonical treatment to assure having sufficient information.

Figure 4 shows three-dimensional images of the dis-
tribution of zeros of Z�B� in the complex temperature
plane. The poles of j�m�j coincide with the zeros of the
canonical partition function Z�B�. For H � 0.1 mG, only
one distribution of zeros lying at negative temperatures is
present [Fig. 4(a)] corresponding to the inverse occupation
of the two isomers at negative temperatures. With increas-
ing magnetic field, the shape of the distribution changes
[Fig. 4(b)] and the influence of the poles of j�m�j on the
real temperature axis becomes visible. While this effect
is hardly seen for H � 0.1 mG, one is not able to distin-
guish the isomers due to their real-temperature values of
�m�. For H � 1.2 mG and b . 0, the average magnetic
moment equals 1mB, whereas we have �m� � 10mB for
053401-3
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negative temperatures. At higher magnetic fields, a second
distribution of zeros corresponding to the structural transi-
tion between both isomers is seen.

An inspection of both distributions of zeros reveals that
the structural transition is of first order, i.e., for the classifi-
cation parameters we have a � g � 0. Whereas, for the
transition located at negative temperatures, we find a . 0
and g fi 0, i.e., a second-order transition, unless the mag-
netic field completely disappears.

Another interesting example for first-order transitions,
which become second order with growing size, has been
found by Proykova et al. [27]. There, two transitions have
been found in TeF6 clusters. They conclude that one of
them is supposed to be of first order, which becomes con-
tinuous for larger clusters, because they find two minima in
the free energy as a function of an order parameter which
merge to one minimum for larger cluster sizes. The arbi-
trary choice of the order parameter, however, might lead
to different results [22].

Figure 5 displays the magnetic susceptibility x within
the complex temperature plane. The susceptibility is plot-
ted versus the complex inverse temperature. The blurred
peaks of x in Fig. 3(d) can be clearly related to “radia-
tions” of the zeros onto the real axis.

An inspection of the whole complex temperature plane
reveals the origin of the two maxima of the susceptibility
at H � 0.5 mG on the real axis [compare Fig. 3(d)].
For H � 0.5 mG the hump in x located at T 
 3 K
�b 
 3800 eV21� has its origin in the distribution of
zeros lying at negative temperatures. Also the hump at
T � 80 K, where earlier calculations have suggested that
it is also related to a structural transition [17], has its origin
in this distribution of zeros. For 2.0 mG the distribution of
zeros lying at positive temperatures contributes most to x

for real temperatures at b 
 400 eV21 � T 
 30 K
corresponding to the structural transition seen in Fig. 3(d).

Since the distribution of poles of the considered ther-
modynamic function [the distribution of zeros of Z�B�] is
discrete, the influences on the real axis might be shielded
by zeros of these functions. For example, the distributions
of poles of �m� and x are surrounded by distributions of
zeros which are different for �m� and x. These thermo-
dynamic functions are analytic everywhere except at the
poles and zeros. Thus, if there is a zero in the vicinity of
a pole near the real axis, the decrease of �m� or x cannot
be compensated.

In conclusion, we have shown that the use of the com-
plex inverse temperature plane has advantages to com-
mon investigations of thermodynamic functions. Within
our classification scheme the order of a transition can be
clearly identified. By means of a simple two-isomer model
for small magnetic clusters, we are able to identify two dif-
ferent types of phase transitions. Furthermore, we found
that signals in the magnetic susceptibility at positive tem-
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peratures might have their origin at negative temperatures.
This also indicates that the inverse temperature is analytic
at b � 1�T � 0 and therefore should be used in calcula-
tions of thermodynamic properties.

We thank E. R. Hilf for fruitful discussions and valuable
comments.
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