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Magnetically Quantized Continuum Distorted Waves
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A new derivation of continuum distorted-wave theory is presented. It is generalized to magnetically
quantized continuum distorted waves. The context is analytic continuation of hydrogenic-state wave func-
tions from below to above threshold, using parabolic coordinates and quantum numbers including m the
magnetic quantum number. This continuation applies to excitation, charge transfer, ionization, and double
and hybrid events for both light- and heavy-particle collisions. It is applied to the calculation of double-
differential cross sections for the single ionization of the hydrogen atom and for a hydrogen molecule by a
proton for electrons ejected in the forward direction at a collision energy of 50 keV and 100 keV
respectively.
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A continuum distorted wave (CDW) [1] theory for
charge transfer in ion-atom collisions was first presented
by Cheshire [2]. It proved to be a remarkably successful,
flexible, and pragmatic theory [3]. Many improvements
have since been made. Crothers [4] showed that CDW
bound states are in general unnormalized (and pro-
posed CDW for light-particle collisions). The use of a
gauge transformation in the impact parameter � r� time-
dependent treatment leads to a r-dependent phase factor
[5] with the internuclear potential eliminated. An on-shell
derivation of CDW is more physically understandable and
avoids artificial logarithmic potentials and spurious nonlo-
cal operators [6]. The net perturbation is the nonorthogonal
kinetic energy —≠rT .≠rP where the electron has position
vectors rP , rT with respect to the projectile (P) and target
(T) nucleus. Elastic-divergence free CDW Neumann-
Born series may be derived [7], with connected kernel.

Thomas double scattering is a second-order event lead-
ing to electron capture [8,9]. Fortunately CDW2 resolves
the matter, with only one Thomas resonance, and including
all strong and intermediate coupling. Moreover, considera-
tion of CDW3 [10] shows that the Thomas CDW series has
converged. In the case of capture/excitation, variational
coupled equations may be formulated and applied [11,12].

For ionization, following the CDW final state of Belkic̆
[13], Crothers and McCann [14] introduced CDW-EIS
(eikonal-initial state). Some of the major advantages are
that both the initial and final states are normalized, all
long-range Coulomb boundary conditions are satisfied, and
the full two-center final state is a product of two CDWs,
one T and one P based, so that most of the post-collision
interaction is included. A dynamic molecular theory,
CDW-EIS has been generalized to electron impact [15,16]
and to R (relativistic) CDW-EIS [17].

O’Rourke et al. [18] have described the application of
CDW-EIS to doubly differential cross sections (DDCS)
including complete longitudinal momentum distributions
(electron, recoil, and projectile ion). They also considered
DDCS 2D plots against k�y at forward scattering and 3D
plots against k�y and uk (where y is the impact velocity,
1-1 0031-9007�02�88(5)�053201(4)$20.00
k is the ejected electron velocity, and uk is the polar angle
of the ejected electron).

However, no evidence was found, by our experimental
and theoretical group [19], for saddle points for collisions
of 40 keV protons with either He or H2. Moreover, for
100 keV proton collisions with H2 CDW-EIS calculations
predict saddle points in contradiction with our experimen-
tal group [20]. This was puzzling, since saddle-point elec-
trons are normally associated with lower impact energies.
We were therefore moved to reconsider the very basis of
CDW-EIS. Accordingly, a new derivation of continuum
distorted-wave theory is presented. It is generalized to
magnetically quantized continuum distorted waves. The
context is analytic continuation of hydrogenic-state wave
functions from below to above threshold, using parabolic
coordinates and quantum numbers including m the mag-
netic quantum number.

In the time-independent distorted-wave formalism, the
exact transition amplitude is given in the post-interaction
formulation [21] by
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having included the internuclear eikonal phases [5]. The
plane waves of the nuclear motion are parametrized by
the initial �Ki� and final �Kf � relative momentum of
the nuclei, with R the position vector of P with respect
to T . The electron translation factor is exp�2 1

2 iy ? r�,
where r is the electron position vector relative to the
053201-2
midpoint of the nuclei. ZT and ZP are the target and
projectile charges, and fi�rT � the initial stationary
bound state. mT , mP , and mi are the magnetic quantum
numbers of the target, projectile, and the initial state,
respectively, and without any loss of generality we can
set mi � 0.

Here we define the CDW given by
mD1
y �r; Z� � exp

µ
imf 1

pn

2

∂
�yr 2 y ? r�jmj�2�yr 1 y ? r�jmj�2 G�1 1

1
2 jmj 2 in�G�1 1

1
2 jmj�

G2�1 1 jmj�

3 M

µ
in 1

1
2
jmj, 1 1 jmj, iyr 2 iy ? r

∂
M

µ
1
2
jmj, 1 1 jmj, 2iyr 2 iy ? r

∂

� exp�imf� �yr 2 y ? r�2in r ! ` , (4)
where n �
Z
y �

mZ
k , m is the reduced mass, M is the

regular Kummer function, and

mD2
y �r; Z� � �mD1

2y�r; Z��� , (5)

which distorted waves satisfy the correct asymptotic
boundary conditions. The results (4), (5) indicate that the
three two-body phases accumulating asymptotically in
Eq. (3) are correct [22]. The exact C

1
i is approximated

by c
1
i with the CDW taken in its eikonal form [Eq. (4)]:

hence G�CDW-EIS (eikonal-initial state).
We note p is the momentum of the ejected electron

relative to the projectile. fT is the angle between the
planes �rT , k� and �y, k� and fP is the angle between the
planes �rP , p� and �y, p�. We note also that, although
p � k 2 y, p and k are skew vectors.

Equations (2) to (5) represent a generalization of pre-
vious CDWs [6,14], following the introduction of three
magnetic quantum numbers. They afford the inclusion of
a rapidly convergent complete set of CDWs, which per-
mits (especially target) continuum rotational coupling, an
important physical mechanism. We shall present details
elsewhere, while only mentioning here that, in Schiff [23]
[Eq. (16.36) and (37)] we interchange h and j for conve-
nience, and set
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where l1 and l2 are separation constants and n1 and n2

are the standard parabolic quantum numbers.
The uniform two-center nature of c

2
f may be confirmed

by noting that
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where in the impact parameter treatment
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It may also be noted that in mD1
y �r; Z�, the first M function

is outgoing, whereas the second is ingoing and vice versa
for mD2

y �r; Z�.
Since Hyc

2�
f and Hc

1
i both contain the nonorthogonal

kinetic energy 2≠rT ? ≠rP , the second term in Eq. (1) may
be neglected, and the generalized (G)CDW in Eq. (2) may
assume its asymptotic eikonal form, for all but the smallest
partial-wave azimuthal angular momentum quantum num-
bers. Thus we have derived GCDW-EIS.

In Fig. 1 we present DDCS for proton hydrogen-atom
50 keV collisions for forward scattering. We plot d2s

dVkdEk

versus Ek , the ejected electron energy and where Vk is the
solid angle sinukdukdfk. The dashed line corresponds to
mP � 0 � mT [14]. The solid line corresponds to the in-
clusion of mP � 21, 0, 11 and mT � 21, 0, 11, making
9 contributions, to our new G (generalized) CDW-EIS the-
ory for DDCS. There is a shallow minimum implying a
saddle point. In Fig. 2, we show that for mT � 0, mP � 0
dominates mP � 61, which dominates mP � 62.

In Fig. 3, we show that for mP � 0, mT � 61 domi-
nates mT � 62, except very close to the cusp. However,
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FIG. 1. The DDCS for the collision of 50 keV proton with a
hydrogen-atom at an electron emission angle of 0±. Dashed
line: GCDW-EIS with mP � mT � 0 (� CDW-EIS); solid
line: GCDW-EIS with double summation over mP and mT from
21 to 11.
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FIG. 2. The DDCS for the collision of 50 keV proton with
a hydrogen atom at an electron emission angle of 0±. Solid
line: GCDW-EIS with mP � mT � 0 (� CDW-EIS); dashed
line: GCDW-EIS with mT � 0 and mP � 61; dotted line:
GCDW-EIS with mT � 0 and mP � 62.

to the left down to 10 eV, mT � 61 dominates mT � 0.
Results not shown for mP � 62, with mT � 0, 61, 62,
for mP � 63, with mT � 0, 61, 62, 63, and for mP �
64, with mT � 0, 61, 62, 63, 64, all show DDCS
orders of magnitude less and with strong anticusps.

In Figs. 4 and 5 we illustrate proton hydrogen-molecule
100 keV forward scattering DDCS, namely kd2s

dEkd cosuk
plot-

ted against k�y. In Fig. 4, we include only mP � 0 � mT

in the lower curve [14], whereas in the upper curve we sum
the DDCS over mP and mT , each from 22 through 0 to
12. The minimum at k�y � 0.5 is so shallow as to be
almost indistinguishable from a horizontal point of inflex-
ion. This implies a shelf rather than a saddle.

In Fig. 5, the DDCS of the upper curve in Fig. 4
(summed over mP and mT each from 22 to 12) are
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FIG. 3. The DDCS for the collision of 50 keV proton with
a hydrogen-atom at an electron emission angle of 0±. Solid
line: GCDW-EIS with mP � mT � 0 (� CDW-EIS); dashed
line: GCDW-EIS with mP � 0 and mT � 61; dotted line:
GCDW-EIS with mP � 0 and mT � 62.
053201-3
plotted against our relative experimental results [20]
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FIG. 4. The DDCS for the collision of 100 keV proton with
H2 at an electron emission angle of 0±. Solid line: CDW-EIS;
squares: GCDW-EIS with mP � mT � 0 showing it reduces
down to original CDW-EIS theory; dashed line: GCDW-EIS
with double summation over mP and mT from 22 to 12.

suitably scaled. The agreement is much improved com-
pared to our basic mP � 0 � mT theory [20]. From
Fig. 4, we note that for k , y, the DDCS are increased
and the cusp is broadened, compared to the original mP �
0 � mT theory. This makes physical sense because slower
electrons will have more time to experience rotational cou-
pling out of their azimuthal plane. For k . y, the cusp is
not broadened per se but for the highest values of k, the
DDCS are increased.

In conclusion, CDW, CDW-EIS, and GCDW-EIS theo-
ries have been shown to be remarkably robust in rising to
the experimental challenges, both theory and experiment
being generated within our own group.
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FIG. 5. The DDCS for the collision of 100 keV proton with
H2 at an electron emission angle of 0±. Solid line: GCDW-EIS
with double summation over mP and mT from 22 to 12.
Circles: experimental results of [20].
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