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We consider an ensemble of coupled nonlinear noisy oscillators demonstrating in the thermodynamic
limit an Ising-type transition. In the ordered phase and for finite ensembles stochastic flips of the mean
field are observed with the rate depending on the ensemble size. When a small periodic force acts on
the ensemble, the linear response of the system has a maximum at a certain system size, similar to the
stochastic resonance phenomenon. We demonstrate this effect of system size resonance for different
types of noisy oscillators and for different ensembles— lattices with nearest neighbors coupling and
globally coupled populations. The Ising model is also shown to demonstrate the system size resonance.
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Stochastic resonance has attracted much interest re-
cently [1]. As was demonstrated in [2], a response of a
noisy nonlinear system to a periodic forcing can exhibit a
resonancelike dependence on the noise intensity. In other
words, there exists a “resonant” noise intensity at which
the response to a periodic force is maximally ordered. Sto-
chastic resonance has been observed in numerous experi-
ments [3]. Noteworthy, the order in a noise-driven system
can have a maximum at a certain noise level even in the
absence of periodic forcing, this phenomenon being called
coherence resonance [4].

Being first discussed in the context of a simple bistable
model, stochastic resonance has been also studied in com-
plex systems consisting of many elementary bistable cells
[5]; moreover, the resonance may be enhanced due to cou-
pling [6]. In this paper we discuss another type of reso-
nance in such systems, namely, the system size resonance,
when the dynamics is maximally ordered at a certain num-
ber of interacting subsystems. Contrary to previous reports
of array-enhanced stochastic resonance (cf. also [7]), here
we fix the noise strength, coupling, and other parameters;
only the size of the ensemble changes.

The basic model to be considered below is the ensemble
of noise-driven bistable overdamped oscillators, governed
by the Langevin equations,

�xi � xi 2 x3
i 1

´

N

NX
j�1

�xj 2 xi� 1
p

2D ji�t� 1 f�t� .

(1)

Here ji�t� is a Gaussian white noise with zero mean:
�ji �t�jj�t0�� � dijd�t 2 t0�; ´ is the coupling constant;
N is the number of elements in the ensemble, and f�t� is
a periodic force to be specified later. In the absence of pe-
riodic force, the model (1) has been extensively studied in
the thermodynamic limit N ! `. It demonstrates an Ising-
type phase transition at ´ � ´c from the disordered state
with vanishing mean field X � N21

P
i xi to the “ferro-

magnetic” state with a nonzero mean field X � 6X0 [8].
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While in the thermodynamic limit the full description of
the dynamics is possible, for finite system sizes we have
mainly a qualitative picture: In the ordered phase the mean
field X switches between the values 6X0 and its average
vanishes for all couplings. The rate of switchings depends
on the system size and tends to zero as N ! `.

For us, the main importance is the fact that qualitatively
the behavior of the mean field can be represented as the
noise-induced dynamics in a potential with one minimum
in the disordered phase (at X � 0) and two symmetric min-
ima (at X � 6X0) in the ordered phase. Now, applying
the ideas of the stochastic resonance, one can expect in the
bistable case (i.e., in the ordered phase for small enough
noise or for large enough coupling) a resonantlike behav-
ior of the response to a periodic external force when the
intensity of the effective noise is changed. Because this
intensity is inverse proportional to N , we obtain the reso-
nancelike curve of the response in dependence of the sys-
tem size. The main idea behind the system size resonance
is that in finite ensembles of noise-driven or chaotic sys-
tems the dynamics of the mean field can be represented
as driven by the effective noise whose variance is inverse
proportional to the system size [9]. This idea has been ap-
plied to the description of a transition to collective behav-
ior in [10]. In [11] it was demonstrated that the finite-size
fluctuations can cause a transition that disappears in the
thermodynamic limit.

Before proceeding to a quantitative analytic description
of the phenomenon, we illustrate it with direct numerical
simulations of the model (1), with a forcing term f�t� �
A cos�Vt�. Figure 1 shows the linear response function,
i.e., the ratio of the spectral component in the mean field
at frequency V and the amplitude of forcing A, in the
limit A ! 0. For a given frequency V the dependence on
the system size is a bell-shaped curve, with a pronounced
maximum. The dynamics of the mean field X�t� is il-
lustrated in Fig. 2, for three different system sizes. The
resonant dynamics (Fig. 2b) demonstrates a typical for
© 2002 The American Physical Society 050601-1
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FIG. 1. Linear response of the ensemble (1) (D � 0.5, ´ � 2)
in dependence on the frequency and the system size N .

stochastic resonance synchrony between the driving peri-
odic force and the switchings of the field between the two
stable positions.

To describe the system size resonance analytically, we
use, following [8], the Gaussian approximation. In this
approximation, one writes xi � X 1 di and assumes
that di are independent Gaussian random variables with
zero mean and the variance M. Assuming furthermore
that N21

P
i d

2
i � M and neglecting the odd moments

N21
P

i di, N21
P

i d
3
i , as well as the correlations between

di and dj, we obtain from (1) the equations for X and M:

�X � X 2 X3 2 3MX 1

s
2D

N
h�t� 1 f�t� , (2)

1
2

�M � M 2 3X2M 2 3M2 2 ´M 1 D , (3)
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FIG. 2. The time dependence of the mean field in the ensemble
(1) for D � 0.5, ´ � 2, A � 0.02, V � p�300, and different
sizes of the ensemble: (a) N � 80, (b) N � 35, and (c) N �
15. We also depict the periodic force (its amplitude is not in
scale) to demonstrate the synchrony of the switchings with the
forcing in (b).
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where h is the Gaussian white noise having the same
properties as ji�t�. In the thermodynamic limit N ! `

the noisy term h vanishes. If the forcing term is absent
� f � 0�, the equations coincide with those derived in [8].
This system of coupled nonlinear equations exhibits a
pitchfork bifurcation of the equilibrium X � 0, M . 0 at
´c � 3D. This bifurcation is supercritical for D . 2�3
in accordance with the exact solution of (1) given in [8];
below we consider only this case. For ´ . ´c the system
is bistable with two symmetric stable fixed points,

X2
0 � �2 2 ´ 1 S��4, M0 � �2 1 ´ 2 S��12 (4)

[here S �
p

�2 1 ´�2 2 24D ], and the unstable point
X � 0, M � �1 2 ´ 1

p
�1 2 ´�2 1 12D ��6. Now,

with the external noise h and with the periodic force
f�t�, the problem reduces to a standard problem in the
theory of stochastic resonance, i.e., to the problem of the
response of a noise-driven nonlinear bistable system to an
external periodic force (because the noise affects only the
variable X, it does not lead to unphysical negative values
of variance M, since �M is strictly positive at M � 0).

To obtain an analytical formula, we perform further sim-
plification of the system (2) and (3). Near the bifurcation
point, we can use the slaving principle to obtain a standard
noise-driven bistable system:

�X � aX 2 bX3 1

s
2D

N
h�t� 1 f�t� , (5)

where a � 1 1 0.5�´ 2 1� 2 0.5
p

�´ 2 1�2 1 12D,
b � 20.5 1 1.5�´ 2 1� ��´ 2 1�2 1 12D�21�2. A bet-
ter approximation valid also beyond a vicinity of the criti-
cal point can be constructed if we use b̄ � aX22

0 instead
of b, where the fixed point X0 is given by (4). Having
written the ensemble dynamics as a standard noise-driven
double-well system (5) (cf. [1,12]), we can use the ana-
lytic formula for the linear response R derived in [12]. It
reads

R �
NX2

0

2Da

µ
D23�2�2

p
s �

D21�2�2
p

s �

∂2∑
1 1

p2V2

2a2
exp�s�

∏21

,

(6)

where s � aNX2
0 ��2D�, and D are the parabolic cylin-

der functions. We compare the theoretical linear response
function with the numerically obtained one in Fig. 3. The
qualitative correspondence is good; moreover, the max-
ima of the curves are rather good reproduced with the
formula (6).

Above, we concentrated on the properties of the linear
response. Numerical simulations with the finite forcing
amplitude yielded the results similar to that presented
in Figs. 1 and 3. However, for large amplitudes of
forcing (e.g., A . 0.1 for V � 0.01, D � 0.5, ´ � 2)
a saturation was observed: Here the response grows
monotonically with N . This is in full agreement with the
corresponding property of the stochastic resonance in
double-well systems of type (5), where the saturation
050601-2
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FIG. 3. Comparison of the system size dependencies of the
linear response function for frequencies V � 0.05 (circles) and
V � 0.1 (squares) with theory (6). The parameters are D � 1
and ´ 2 ´c � 2.5 (where the exact ´c and the approximate
´c � 3D are used for the ensemble and the Gaussian approxi-
mation, respectively). Inset: Dependence of the system size
yielding maximal linear response on the driving frequency V
[circles: simulations of the ensemble (1), line is obtained by
maximizing the expression (6)].

occurs for small noise intensities (cf. Fig. 7 in [1]), due
to the disappearance of multistability for large forcing
amplitudes.

It is instructive to compare the response of the noise-
driven system (1) with the noise-free case D � 0. Without
external force, the ensemble relaxes eventually to a steady
state solution with some mean field X; in this state each
oscillator can be in one of the stable steady positions of
the potential; correspondingly, the oscillators form one or
two clusters. From the clustering it follows that the linear
response does not depend on the number of elements in
the ensemble. Our numerical experiments demonstrated
also that the response is system size independent for large
forcing amplitudes as well, where, e.g., the force-induced
cluster mergings occur. Thus, the effect of system size
resonance essentially relies on the presence of noise, which
breaks the clustering.

Above, we have considered the system of globally cou-
pled nonlinear oscillators (1). The same effect of system
size resonance can be observed in a lattice with nearest
neighbors coupling as well. In the thermodynamic limit,
the Ising-type phase transition occurs in the lattice (if its
dimension is larger than one). Similar to the globally
coupled ensemble, in finite lattices in the ordered phase
the switchings between the two stable states of the mean
field are observed. With the same argumentation as above,
we can conclude that the response of the mean field to
a periodic forcing can have a maximum at a certain lat-
tice size, while all other parameters (noise intensity, cou-
050601-3
pling strength, etc.) are kept constant. We illustrate this
in Fig. 4.

As the next example we consider the two-dimensional
nearest neighbor Ising model in the presence of a time-
dependent external field. The Hamiltonian of the system
reads

H � 2J
X
�ij�

sisj 2 A cos�Vt�
X

i

si , (7)

where J . 0 and si � 61. We are interested in the depen-
dence of the response of the mean magnetization m�t� �
1
N

P
i si�t� on the system size N (for the usual stochastic

resonance in the Ising model, i.e., for the dependence of
the response on the temperature, see [13]). To calculate the
linear response, we used the fluctuation-dissipation theo-
rem and obtained this quantity by virtue of the power spec-
trum of fluctuations of m�t�. The latter was found using
the Metropolis Monte Carlo method on a lattice with he-
lical boundary conditions [14]. The results presented in
Fig. 5 demonstrate the system size resonance of the linear
response in the two-dimensional Ising model.

As the last example of the system size resonance, we
consider a lattice where each individual element does
not exhibit bistable noisy dynamics, but such a behavior
appears due to interaction and multiplicative noise. This
model is described by the set of Langevin equations
[15,16]:

�xi � 2xi�1 1 x2
i �2 1

´

K

X
j

�xj 2 xi�

1
p

2D ji�t� �1 1 x2
i � 1 f�t� . (8)

As has been demonstrated in [15], in some region of cou-
plings the ´ system (8) exhibits the Ising-type transition.
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FIG. 4. Filled circles: Response of a two-dimensional lattice
of N with nearest neighbors coupling for A � 0.02, T � 500,
D � 0.5, and ´ � 4. Squares: Response of system (8) (a two-
dimensional lattice with D � 1.25, ´ � 30, A � 0.1, and T �
140). Circles: The same as squares, but for a globally coupled
lattice with D � 1, ´ � 20, A � 0.1, and T � 100.
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FIG. 5. Linear response (in arbitrary units) of the Ising model
(7) for the temperature T � 2J slightly below the critical tem-
perature Tc � 2.269J .

If an additional additive noise is added to (8), then one
observes transitions between these states and the so-called
double stochastic resonance in the presence of the periodic
forcing [17]. As is evident from the considerations above,
such transitions occur even in the absence of the additive
noise if the system is finite. Thus, the system size reso-
nance should be observed in the lattice (8) as well. We
confirm this in Fig. 4.

Another possible field of application of the system size
resonance is the neuronal dynamics (see, e.g., [18]). Indi-
vidual neurons have been demonstrated to exhibit stochas-
tic resonance [3,19]. While in experiments one can easily
adjust noise to achieve the maximal sensitivity to an ex-
ternal signal, it may not be obvious how this adjustment
takes place in nature. The above consideration shows that
changing the number of elements in a small ensemble of
coupled bistable elements to the optimum can significantly
improve the sensitivity (cf. [5]). Moreover, changing its
connectivity and/or coupling strength, a neuronal system
can tune itself to signals with different frequencies.

In conclusion, we have shown that, in populations of
coupled noise-driven elements, exhibiting in the thermody-
namic limit the Ising-type transition, in the ordered phase
(i.e., for relatively small noise and large coupling) the re-
sponse to a periodic force achieves maximum at a certain
size of the system. We demonstrated this effect for the
Ising model, as well as for lattices and globally coupled
ensembles of noisy oscillators. We expect the system size
resonance to occur also in purely deterministic systems
demonstrating the Ising-type transition, e.g., in the Miller-
Huse coupled map lattice [20]. The system size resonance
is described theoretically by reducing the dynamics of the
mean field to a low-dimensional bistable model with an ef-
fective noise that is inverse proportional to the system size.
The stochastic resonance in the mean field dynamics then
manifests itself as the system size resonance.
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