
VOLUME 88, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 4 FEBRUARY 2002

050402
Conservation Laws, Uncertainty Relations, and Quantum Limits of Measurements

Masanao Ozawa
Center for Photonic Communication and Computing, Department of Electrical and Computer Engineering,

Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3118
and CREST, Japan Science and Technology, Graduate School of Information Sciences,

Tohoku University, Aoba-ku, Sendai, Miyagi 980-8579, Japan
(Received 6 June 2001; published 23 January 2002)

The uncertainty relation between the noise operator and the conserved quantity leads to a bound on
the accuracy of general measurements. The bound extends the assertion by Wigner, Araki, and Yanase
that conservation laws limit the accuracy of “repeatable,” or “nondisturbing,” measurements to general
measurements, and improves the one previously obtained by Yanase for spin measurements. The bound
represents an obstacle to making a small quantum computer.
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In 1952, Wigner [1] found that conservation laws put a
limit on measurements of quantum mechanical observables.
In 1960, Araki and Yanase [2] proved the following asser-
tion known as the Wigner-Araki-Yanase (WAY) theorem:
Observables which do not commute with bounded additive
conserved quantities have no “exact” measurements [3].
Subsequently, Yanase [4] found a bound for the accuracy
of measurements of the x component of spin in terms of the
“size” of the apparatus, where the size is characterized by
the mean square of the z component of the angular momen-
tum [5]. Yanase [4] and Wigner [6] concluded from this
result that in order to increase the accuracy of spin mea-
surement one has to use a very large measuring apparatus.

In the WAY theorem, for a measurement to be “exact”
the following two conditions are required to be satisfied:
(i) the Born statistical formula (BSF) and (ii) the repeat-
ability hypothesis (RH), asserting that, if an observable is
measured twice in succession in a system, then we obtain
the same value each time. Yanase’s bound does not assume
the RH. Instead, a condition, to be referred to as Yanase’s
condition, is assumed that the probe observable, the ob-
servable in the apparatus to be measured after the mea-
suring interaction, commutes with the conserved quantity,
to ensure the measurability of the probe observable [4].
Elaborating the suggestions given by Stein and Shimony
[3], Ohira and Pearle [7] constructed a simple measur-
ing interaction that satisfies the conservation law and the
BSF, assuming the precise probe measurement, but does
not satisfy the RH. Based on their model, Ohira and Pearle
claimed that it is possible to have an accurate measurement
of the spin component regardless of the size of the appa-
ratus, if the RH is abandoned. However, their model does
not satisfy Yanase’s condition, so that the problem remains
as to the measurability of the probe observable.

Yanase’s argument, however, assumes a large (but of
variable size) measuring apparatus having the continuous
angular momentum from the beginning for technical rea-
sons and concludes that accurate measurement requires a
very large apparatus. To avoid a circular argument, a rig-
orous derivation without such an assumption is still de-
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manded. Moreover, Wigner [6] pointed out the necessity
for generalizing the bound to general quantum systems
other than spin 1�2 systems, as well as including all addi-
tive conservation laws.

In order to accomplish the suggested generalization, a
new approach to the problem is proposed in this Letter
based on the uncertainty relation between the conserved
quantity and the noise operator, defined as the difference
between the post-measurement probe and the measured
quantity. We obtain a bound for the mean-square error
of general measuring interactions imposed by any additive
conservation laws without assuming the RH. This bound
also clarifies the trade-off between the size and the commu-
tativity of the noise operator with the conserved quantity,
unifying the suggestion by WAY and others and the one
suggested by Ohira and Pearle. For spin measurements,
this bound with Yanase’s condition leads to a tight bound
for the error probability of spin measurement, which im-
proves Yanase’s bound.

Let A�x� be a measuring apparatus with macroscopic
output variable x to measure, possibly with some error, an
observable A of the object S, a quantum system repre-
sented by a Hilbert space H . The measuring interaction
turns on at time t, the time of measurement, and turns off
at time t 1 Dt between the object S and the probe P, a
part of the apparatus that interacts with the object, repre-
sented by a Hilbert space K . Denote by U the unitary
operator on H ≠ K representing the time evolution of
S 1 P in the time interval �t, t 1 Dt�.

At the time of measurement, the object is supposed to be
in an unknown (vector) state c and the probe is supposed to
be prepared in a known (vector) state j; all state vectors are
assumed to be normalized unless stated otherwise. Thus,
the composite system S 1 P is in the state c ≠ j at time t.
Just after the measuring interaction, the probe is subjected
to a local interaction with the subsequent stages of the
apparatus. The last process is assumed to measure an
observable M, called the probe observable, of the probe
with arbitrary precision, and the outcome is recorded as
the value of the macroscopic outcome variable x.
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In the Heisenberg picture with the original state c ≠ j at
time t, we shall write A�t� � A ≠ I, M�t� � I ≠ M, A�t 1

Dt� � Uy�A ≠ I�U, and M�t 1 Dt� � Uy�I ≠ M�U.
We shall denote by “ x�t� [ D” the probabilistic event
that the outcome of the measurement using apparatus
A�x� at time t is in an interval D. Since the outcome
of this measurement is obtained by the measurement of
the probe observable M at time t 1 Dt, the probability
distribution of the output variable x is given by

Pr�x�t� [ D� � kEM�t1Dt��D� �c ≠ j�k2, (1)

where EM�t1Dt��D� stands for the spectral projection of the
operator M�t 1 Dt� corresponding to the interval D. We
call the above description of the measuring process the in-
direct measurement model determined by �K , j, U, M� [8].

We say that apparatus A�x� measures observable A pre-
cisely, if A�x� satisfies the BSF for observable A,

Pr�x�t� [ D� � kEA�D�ck2, (2)

on every input state c. Otherwise, we consider apparatus
A�x� to measure observable A with some noise.

The noise operator N of apparatus A�x� for measuring
A is defined by

N � M�t 1 Dt� 2 A�t� . (3)

The noise e�c� of apparatus A�x� for measuring A on input
state c is, then, defined by

e�c�2 � �N2� , (4)

where �· · ·� stands for �c ≠ jj · · · jc ≠ j�. The noise
e�c� represents the root-mean-square error in the outcome
of the measurement. By Eq. (4), we have

e�c�2 $ �DN�2, (5)

where DX stands for the standard deviation of an observ-
able X in c ≠ j, i.e., �DX�2 � �X2� 2 �X�2.

We define the noise e of apparatus A�x� to be the least
upper bound of e�c� over all possible input states c. One
of the fundamental properties of the noise is that precise
apparatuses and noiseless apparatuses are equivalent no-
tions, as ensured by the following theorem [9]: Apparatus
A�x� measures observable A precisely if and only if e � 0.

Consider the additive conservation law (ACL) for ob-
servables L1 of the object S and L2 of the probe P, i.e.,

�U, L1 ≠ I 1 I ≠ L2	 � 0 . (6)

In the Heisenberg picture, we shall write L1�t� � L1 ≠ I,
L2�t� � I ≠ L2, L1�t 1 Dt� � Uy�L1 ≠ I�U, and
L2�t 1 Dt� � Uy�I ≠ L2�U. The ACL, (6), can be
restated as the invariance principle

L1�t� 1 L2�t� � L1�t 1 Dt� 1 L2�t 1 Dt� . (7)

The WAY theorem [1,2] states that, if L1 is bounded,
there is no apparatus precisely measuring A that satisfies
the RH and the ACL, unless A commutes with the con-
served quantity L1. In the following argument, we shall
require the ACL but abandon the RH.
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Why does the conservation law limit the accuracy of
measurement in general? A simple observation on the
noise operator will lead to a significant interplay between
the conservation law and the uncertainty relation. As we
have discussed above, the measurement is precise if and
only if �N2� � kN�c ≠ j�k2 � 0. If this is the case, the
uncertainty relation,

�DN�2�D�L1�t� 1 L2�t�	�2 $
1
4 j��N ,L1�t� 1 L2�t�	�j2,

(8)

concludes that, if the conserved quantity does not commute
with the noise operator in the initial state, the conserved
quantity should have infinite variance, or the precise mea-
surement is impossible for the bounded conserved quantity.

Let us study the quantitative relations shown by the un-
certainty relation, (8), in detail. Since L1�t� and L2�t� are
statistically independent, the variance of their sum is the
sum of their variances, i.e.,

�D�L1�t� 1 L2�t�	�2 � �DL1�t�	2 1 �DL2�t�	2. (9)

Since A and L1 are in the object and M and L2 are in the
probe, we have

�M�t 1 Dt�, L1�t 1 Dt�	 � �A�t�, L2�t�	 � 0 .

By the ACL, (7), we obtain

�N , L1�t� 1 L2�t�	 � �M�t 1 Dt�, L2�t 1 Dt�	
2 �A�t�, L1�t�	 . (10)

From Eqs. (5), (8), (9), and (10), we obtain the following
fundamental lower bound of the noise of apparatus A�x�:

e�c�2 $
j��M�t 1 Dt�, L2�t 1 Dt�	 2 �A�t�, L1�t�	�j2

4�DL1�t�	2 1 4�DL2�t�	2 .

(11)

From the above lower bound, in order to attain e � 0 it
is necessary to choose j, U, and M satisfying

�jjUy�I ≠ �M, L2	�Ujj� � �A, L1	 . (12)

Stein and Shimony [3] and Ohira and Pearle [7] gave ex-
amples that actually attain e � 0. Does this mean that, if
we abandon the RH, the ACL allows us to have a noiseless
measuring apparatus regardless of the size of the appara-
tus? Recall that the noise e is defined as the one from the
measuring interaction, which quantum mechanics can ana-
lyze in detail. Thus, if we do not assume that the probe
measurement is carried out precisely, the noise e depends
on the boundary between the probe and the rest of the ap-
paratus. Since this boundary is rather arbitrary, it can be
seen that the measuring apparatus carries out the precise
measurement if and only if the noise e vanishes for any
boundaries. Thus, in order to show that the ACL limits the
accuracy of the measuring apparatus, it suffices to show
that a particular boundary leads to an inevitable noise.
For this purpose, we shall consider the maximal bound-
ary in a given apparatus. In this case, the notion of the
probe is identical with a quantum mechanical description
of a measuring apparatus, so that we can assume (i) the
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probe includes all the external sources of interactions, and
(ii) the probe observable plays a role of the record. As-
sumption (i) is justified, since the measuring apparatus op-
erates covariantly so that it can be used in any laboratory
and at any time. Assumption (ii) is justified, since the mea-
suring apparatus includes a record which the observer can
access repeatedly. From assumption (i) we can assume
that the measuring interaction satisfies the ACL. From
assumption (ii) we can assume that the probe observable
can be measured by another external measuring appara-
tus satisfying the RH. Then, the WAY theorem requires
that the probe observable should commute with the addi-
tive conserved quantities; we call this condition Yanase’s
condition. Therefore, the above argument supports our hy-
pothesis below that in any measuring apparatus there is a
boundary between the probe and the rest of the apparatus
which the ACL and Yanase’s condition hold.

Now, we assume Yanase’s condition,

�M, L2	 � 0 . (13)

In this case, the fundamental noise bound, (11), turns out
to be the following form:

e�c�2 $
j��A�t�, L1�t�	�j2

4�DL1�t�	2 1 4�DL2�t�	2 . (14)

Since the input state is unknown but the probe is prepared
in a known state, the bound is optimized when the input-
independent quantity DL2�t� is maximized. Thus, we can
conclude that in order to decrease the noise of the appa-
ratus, one has to increase the variance of the conserved
quantity in the probe.

Consider the case where the object S is a particle of
spin 1�2. Let Ŝx, Ŝy , and Ŝz be the spin observables of S
in the x, y, and z directions, respectively; we shall write
ai � jŜi � h̄�2� and bi � jŜi � 2h̄�2� for i � x, y, z.
In what follows, we shall optimize the noise e of apparatus
A�x� for measuring the x component of the spin of particle
S, under the following constraints: (i) The measuring
interaction preserves the z component of the total angular
momentum, i.e.,

�U, Ŝz 1 L̂z	 � 0 , (15)

where L̂z is the z component of the angular momentum of
probe P, and (ii) the probe observable M commutes with
the conserved quantity, i.e.,

�M, L̂z	 � 0 . (16)

By the optimization it is meant, here, to obtain the saddle
point in which the bound is maximized by the object state
and minimized by the probe state. From the above con-
straints, Eq. (14) holds for A � Ŝx, L1 � Ŝz , and L2 �
L̂z . By the relation �A, L1	 � �Ŝx , Ŝz	 � 2ih̄Ŝy, we ob-
tain the following bound for the noise:

e�c�2 $
h̄2�Ŝy�t��2

4�DŜz�t�	2 1 4�DL̂z�t�	2
. (17)
050402-3
For apparatuses with large �DL̂z�t�	2, the optimal bound
achieves when the numerator of the right-hand side of
Eq. (17) is maximized. This is achieved by c � ay, for
instance, in which we have �Ŝy�t�� � DŜz�t� � h̄�2. In
this case, we have the optimal bound as follows:

e2 $ e�ay�2 $
h̄2

4 1 16�Dm̂z	2 , (18)

where m̂z is the initial angular momentum normalized by
h̄, i.e., m̂z � L̂�t�z�h̄. If Dm̂z is not large enough, the
right-hand side of Eq. (18) may not be optimal; however,
Eq. (18) still gives a correct lower bound, since our deriva-
tion uses no approximation.

For spin 1�2 measurements, the mean-square error is
considered to be the h̄2 times the error probability, and,
hence, we should define the error probability Pe�c� by

Pe�c� �
e�c�2

h̄2 . (19)

Then, the maximum error probability Pe is bounded by

Pe $ Pe�ay� $
1

4 1 16�Dm̂z	2 . (20)

For the engineering of microscopic information processors
such as quantum logic gates [10], this bound is considered
to be a serious obstacle to realizing small and accurate
quantum devices.

In addition to the formulation discussed above, Yanase
[4] and Wigner [6] considered the measuring interaction
with the following form:

U�ax ≠ j� � ax ≠ j1 1 bx ≠ h1, (21a)

U�bx ≠ j� � bx ≠ j2 1 ax ≠ h2. (21b)

The states j6 and h6 are not normalized. The states j6 are
assumed to be eigenstates of the observable M satisfying

Mj6 � 6
h̄
2

j6. (22)

The problem is to find a lower bound of the sum of the two
“unsuccessful probabilities” kh1k2 and kh2k2,

e2
Y � kh1k2 1 kh2k2, (23)

to show a trade-off with the size of the apparatus character-
ized by the mean square, �m̂2

z �, of the normalized angular
momentum.

Under these, and the additional technical assumptions
that eY is very small and that �m̂2

z � is so large that the
eigenvalues of m̂z can be treated as a continuous parameter,
Yanase [4] obtained the following lower bound:

e2
Y .

1
8�m̂2

z �
. (24)

Later, Ghirardi et al. [5] derived the same bound for rota-
tionally invariant interactions without continuous parame-
ter approximation.
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In what follows, we shall obtain a tighter bound for e
2
Y

without any approximation. For this purpose, we shall
show the relation

e2
Y $

2
h̄2 e�ay�2 � 2Pe�ay� . (25)

The proof runs as follows. Easy computations show

UN�ax ≠ j� � bx ≠

µ
M 2

h̄
2

I

∂
h1, (26a)

UN�bx ≠ j� � ax ≠

µ
M 1

h̄

2
I

∂
h2. (26b)

By the relation 2ay � �1 1 i�ax 1 �1 2 i�bx , we have

e�ay�2 � kUN�ay ≠ j�k2 �
1
2

Ü µ
M 2

h̄

2
I

∂
h1

Ü2

1
1
2

Ü µ
M 1

h̄
2

I

∂
h2

Ü2

#
h̄2

2
kh1k2 1

h̄2

2
kh2k2 �

h̄2

2
e2

Y .

Thus, we obtain Eq. (25). By combining relations (20) and
(25), we conclude

e2
Y $

1
2 1 8�Dmz�2 . (27)

Under the conditions (i) 1 ø �Dmx�2 and (ii) �m̂z� 
 0,
Yanase’s bound, (24), turns out to be a good approximation
for the rigorous bound, (27), and otherwise the new bound
is tighter.

In order to show that the bound (20) typically vanishes
for macroscopic apparatuses, we assume that the probe
is a three-dimensional isotropic harmonic oscillator in a
coherent state. Let ja� and jb� be the coherent states
quantized along the x and y axes, respectively. Then from
Ref. [11] we have

�Dm̂z�2 � jaj2 1 jbj2, (28)
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and, hence, the optimal bound turns to

Pe $
1

4 1 16jaj2 1 16jbj2
. (29)

If the probe is a macroscopic harmonic oscillator, we have
jaj2, jbj2 ¿ 1, and, hence, the error probability Pe can
be arbitrarily small.

We have obtained a bound for the accuracy of general
measurements imposed from conservation laws and un-
certainty relations. This bound shows that, in order to
make a precise measurement, the probe is required to have
very large variance of the conserved quantity, as long as
the probe can be observed repeatedly. If the apparatus
is macroscopic, this bound poses no serious limit. How-
ever, for quantum information processing, measuring in-
teractions occur between qubits, which can have only a
small amount of conserved quantities. The relevance of
this bound with the fundamental limit of quantum infor-
mation processing will be worth further investigations.
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