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A general and an arbitrarily efficient scheme for entangling the spins (or any spinlike degree of free-
dom) of two independent uncorrelated identical particles by a combination of two particle interferometry
and which way detection is formulated. It is shown that the same setup could be used to identify the
quantum statistics of the incident particles from either the sign or the magnitude of measured spin cor-
relations. Our setup also exhibits a curious complementarity between particle distinguishability and the
amount of generated entanglement.
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Recent years have witnessed a great surge of interest in
the applications of entanglement [1–3]. In this context,
it is important to explore efficient and general ways of
preparing entanglement. Most known mechanisms for ob-
taining entangled states [3–7] are dependent on the specific
nature of the systems involved. Here we propose a very
general scheme for entangling the spins (or any spinlike
degree of freedom) of two particles of any type (bosons or
fermions) by a combination of two particle interferometry
and which way detection. The fractional yield of
entangled pairs for a given number of input pairs can be
arbitrarily increased by a recursive procedure using just
one beam splitter and two detectors. The main application
of our setup will be in entangling material objects such as
neutrons, electrons, atoms, or macromolecules. This will
enable testing quantum nonlocality through separate mea-
surements on far separated massive particles. A salient
feature of our setup is the fact that two independent iden-
tical particles do not need to interact directly for getting
entangled. They need only to interact individually with
beam splitters and detectors, and their indistinguishability
can be exploited to yield entanglement. This is thus useful
for entangling those particles which interact weakly (or
do not interact) with other particles of the same species.
Another advantage of our setup is that the disentangled
initial state of the independent particles can be prepared
by classical communications without any nonlinearity as
opposed to the states in the current methods [3,4]. We
show that the same setup allows identification of the
quantum statistics of the incident particles from either the
presence/absence of entanglement or the sign of measured
spin correlations, depending upon whether the two particle
input state is unpolarized or oppositely spin polarized,
as opposed to previous tests based on particle number
measurements [8–12]. It also exhibits a complementarity
between particle distinguishability and the amount of
entanglement produced. This complementarity involving
“which particle” information in two particle interference
differs fundamentally from the usual form involving
“which way” information in single particle interference
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[13–16]. Our work also suggests a curious dual to stan-
dard entanglement in the context of second quantization.

We will first present a preliminary setup by modifying
an interference process used in the last stage of produc-
tion of polarization entangled photons through down-
conversion [4,17] which works with 50% efficiency
(successful cases being identifiable by appropriate detec-
tor clicks). Figure 1 depicts the setup composed of a beam
splitter with input channels A and B, output channels C
and D and which-channel detectors PC in C and PD in D.
These detectors are assumed to be nonabsorbing and are
able to determine the path without disturbing the spin (this
is possible since position and spin commute; feasibility
will be discussed later). Now consider two identical
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FIG. 1. A preliminary setup consisting of a beam splitter (input
paths A and B, output paths C and D) and absorptionless path
detectors PC and PD which do not disturb the spin. When a pair
of identical particles with opposite spins are incident on the first
beam splitter, one from arm A and the other from arm B, then
corresponding to a coincidence in PC and PD , a spin entangled
state is generated.
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particles in different spin states (say j"� and j#�) incident
simultaneously on the beam splitter from arms A and B as
shown in Fig. 1. This state, in second quantized notation,
is described as a

y
A"a

y
B#j0� where j0� is the vacuum state

and a
y
A" and a

y
B# are creation operators for " spin in path A

and # spin in path B, respectively. We will label the state
concisely as jA"; B#�. For fermions jA"; B#� � 2jB#; A"�,
and for bosons jA"; B#� � jB#; A"�. The transformation
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done by the beam splitter is [12,18]

jA"; B#� !
1
p

2

Ω
1
p

2
�jD"; C#� 6 jD#; C"��

æ

1
i
2

�jC"; C#� 1 jD"; D#�� , (1)

where the 1 sign stands for fermions and the 2 sign stands
for bosons. After the detectors click, the combined state
of the particles and the detectors is
1
p

2

Ω
1
p

2
�jD"; C#� 6 jD#; C"��

æ
jP�

C� jP�
D� ©

i
2

�jC"; C#� jP�
C � jPD� © jD"; D#� jPC� jP�

D�� , (2)
where �jPC�, jPD�� and �jP�
C�, jP�

D�� are the unexcited
and excited (corresponding to detection of one or more
particles) detector states, respectively. In the above
© has been used to indicate the lack of coherence be-
tween orthogonal detector states. When the detectors are
found in the state jP�

C � jP�
D� (coincidence), the state of

the particles is projected onto 1
p

2
�jD"; C#� 6 jD#; C"��.

The spin part of this state can be rewritten in the first
quantized notation (using the paths as particle labels) as
jc6�CD �

1
p

2
�j"�Dj#�C 6 j#�Dj"�C� (spin entangled state).

It is fully legitimate to use the paths as particle labels
because the particles are identical (the same labeling is
used for photon pairs exiting a parametric down con-
verter [4]).

In the above description, we have made two significant
changes to the scheme used for photons. First is the pres-
ence of the special detectors, which could be easier to
design for massive particles. For photons [4,17], such de-
tectors are absent and after the path measurements, the re-
source of entanglement is not available for applications.
Our detectors help us to obtain a useful source of spin
entangled particles. The other difference with the photonic
scheme is that the incident state jA"; B#� is not entangled.
In contrast, the down-conversion based schemes [4] use
a momentum entangled incident state of the two photons.
We merely require the particles to impinge on the beam
splitter at the same instant of time; any prior entangle-
ment is not necessary for this. For example, if atoms from
two independent sources are velocity selected, they can be
made to pass through the same region at the same time as
in recent cavity QED experiments [19]. By removing the
necessity of nonlinearity for generating the incident state,
we thus enlarge the scope of the method to cover all types
of particles.

We now describe our full scheme, in which the effi-
ciency can be arbitrarily increased. First we consider the
addition of two more beam splitters to the setup as shown
in Fig. 2 with the four exit paths E, F, G, and H being
incorporated with which-path detectors PE , PF , PG, and
PH , respectively. If the state jA"; B#� is incident on the first
beam splitter, then the final combined state of the particles
and the detectors is
™ �jG"; E#� 6 jG#; E"�� jP�
E� jPF� jP�

G � jPH� © i�jH"; E#� 6 jH#; E"�� jP�
E� jPF� jPG � jP�

H �

© i�jG";F#� 6 jG#; F"�� jPE� jP�
F� jP�

G� jPH � © �jH"; F#� 6 jH#; F"�� jPE� jP�
F� jPG� jP�

H �

™ �jF"; E#� 7 jF#; E"�� jP�
E � jP�

F� jPG� jPH � ™ �jH"; G#� 7 jH#; G"�� jPE� jPF� jP�
G� jP�

H�

™ i�jE";E#� jP�
E� jPG� ™ jG"; G#� jPE � jP�

G �� jPF� jPH� © i�jF"; F#� jP�
F � jPH � © jH"; H#� jPF � jP�

H �� jPE� jPG� ,

where the upper/lower signs stand for fermions/bosons and
© and ™ indicate the lack of coherence. The above expres-
sion indicates that there will be coincidence between a pair
of detectors in 75% of the cases. In each of these cases,
a spin entangled state will be generated along the corre-
sponding pair of exit channels. For example, for fermions,
if PE and PG click, jc1�GE is produced, and if PH and
PG click, jc2�GH is produced. Based on the knowledge
of the detector clicks, all the different entangled states can
be converted to a desired entangled state by applying spin
dependent phases along appropriate paths. Note that in
only 25% of the cases detector clicks will result in a dis-
entangled state.

The above improvement in success probability stems
from the fact that the extra pair of beam splitters not only
maps the entangled part jc6�DC of the state after the first
beam splitter to entangled final parts, but also maps 50%
of the disentangled parts [5] jC"; C#� and jD"; D#� to en-
tangled final parts. We can easily double the number of
output channels by subdividing each of the existing outputs
by beam splitters and at each stage the entangled fraction
increases. If we subdivide in this manner to obtain 2N

outputs, and put detectors only in these final exit paths,
the fractional yield of entangled pairs is 1 2 1�2N . For
N � 7, this exceeds 99%.

We now describe an interesting feedback scheme to
reduce the resources required in our proposal, while still
retaining the arbitrarily high efficiency. In the setup of
Fig. 1, when the output is found disentangled (i.e., PC

and PD do not click in coincidence), it is fed back again
into the same beam splitter. This procedure could be
repeated successively to increase arbitrarily the efficiency
of entanglement generation. Here the probability of failure
050401-2
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FIG. 2. An improved version of the setup. A and B are the
input paths, E, F, G, and H are the output paths, and PE ,
PF , PG , and PH are absorptionless path detectors which do
not disturb the spin. A pair of identical particles with opposite
spins are incident on the first beam splitter, one from arm A
and the other from arm B. For coincidence between any pair of
detectors, which happens in 75% of the cases, a spin entangled
state is emitted along the corresponding pair of paths.

decreases exponentially (22N ) with the number N of feed-
back rounds, while the required resources (a single beam
splitter and a pair of detectors) remain unchanged.

The next issue of the paper is the identification of quan-
tum statistics through spin correlation measurements. Con-
sider Fig. 1 once again and the incident state jA"; B#�. If
there is a detector coincidence, then the unitary operation
j"� ! 1

p
2

�j"� 1 j#��, j#� ! 1
p

2
�j"� 2 j#�� is applied to the

spins of particles in each of the output channels. The spins
are then measured in the �j"�, j#�� basis. There will be per-
fect correlation between the spin measurement outcomes
in the two paths for fermions and perfect anticorrelation
for bosons. The sign of the spin correlation can thus be
used to identify quantum statistics of the incident particles.
This differs from earlier schemes which rely on particle
number measurements for testing statistics [8–12].

In our setup (Fig. 1), if each particle is fed in the
random spin state rM � j"� �"j 1 j#� �#j, the difference
between bosons and fermions is manifested through the
presence or absence of entanglement in a given experi-
ment. For detector coincidence, a maximally entangled
state jc2�CD is created for bosons and a disentangled
state �1�2� j"C"D� �"C"D j 1 �1�2� j#C#D� �#C#Dj 1 �1�p

2 � jc2�CD �c2jCD results for fermions. The difference
between bosons and fermions can thus be demonstrated
through Bell’s inequalities. The sufficiency of rM implies
050401-3
that no prior spin correlation between the incident particles
is necessary for entanglement generation using bosons.

We now describe a curious complementarity between
particle distinguishability and entanglement in our scheme.
The complementarity of “which channel” information with
fringe contrast in single particle interference is much dis-
cussed [13–16]. In two particle interferometry, which
channel information is naturally replaced by which particle
information. The particles impinging on our setup (Fig. 1)
are indistinguishable apart from their spins (which we
choose not to measure as we intend to create a spin en-
tangled state). Now suppose the particles were partially
or fully distinguishable through some other observable
such as energy or momentum or any nonspin internal de-
gree of freedom. For example, suppose the incident state
is jA " S1; B # S2�, with j�S1 j S2�j � a # 1. Then the
two particle state produced due to detector coincidence is

1
p

2
�jD " S1; C # S2� 6 jD # S2; C " S1��. The spin state

of the particles (in the first quantized notation) is

r �
1
2 �j"C#D � �"C#D j 1 j#C"D� �#C"D j
6 jaj2j"C #D� �#C"Dj 6 jaj2j#C "D� �"C#Dj� . (3)

Note that in the second quantized notation all the degrees
of freedom belong to the same Hilbert space (are created
from the same vacuum). But they become elements of dis-
tinct Hilbert spaces when we proceed to the first quantized
notation. For the above state, a certain entanglement mea-
sure called concurrence [20] is E � jaj2. The probability
of successful discrimination between the states jS1� and
jS2� (which is a measure of particle distinguishability) is
D � 1 2 jaj2. Thus we have, in analogy with Englert’s
relation in single particle interference [16], the following
testable complementarity relation:

E 1 D � 1 . (4)

The concurrence E for r can be inferred by measuring the
expectation value of the Bell-CHSH operator âb̂ 1 âb̂0 1

â0b̂ 2 â0b̂0 on the two particles (labeled by their paths
C and D) with â � sC

x , â0 � sC
y , b̂ �

1
p

2
�sD

x 1 sD
y �,

b̂0 �
1
p

2
�sD

x 2 sD
y � and dividing the result by 62

p
2.

Equation (4) also helps us to estimate the amount of
entanglement generated by our scheme if jS1� and jS2�
are Gaussian wave-packet states of the incident particles
arriving at the beam splitter. If the wave packets have
width s, velocity y, and a time delay Dt with respect to
each other, the entanglement is E � exp�2y2Dt2�2s2�.

We now suggest an unexplored ramification of en-
tanglement in the context of second quantization. One
needs at least two quantum numbers associated with the
creation operators (the spin and output channel labels in
our case) to meaningfully describe an entangled state. In a
suitable quantum state such as 1

p
2

�jD"; C#� 6 jD#; C"��,
when one of the labels (the channel labels C and D in our
case) denotes the identity of the particle, the other degree
of freedom (the spin in our case) appears entangled.
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However, the above state can equally well be rewritten
in first quantized notation as jD"C#� 1 jC"D#� (for both
bosons and fermions), where the spins have been used to
label the particles and their paths are entangled. Devising
schemes to detect this dual form of entanglement (via the
reversal of labels) is currently under way [21].

Finally we discuss the feasibility of our scheme. The
basic ingredients are beam splitters, the capability of per-
forming two particle interference, and which way detectors
that keep the internal degree of freedom to be entangled
undisturbed. Beam splitters are available for photons,
electrons [22], neutrons [23], atoms [14,18,24], and
macromolecules [25]. Two particle interferometry is fea-
sible with photons [9,10]. Its realizability with electrons
has received much attention [11,22]. For atoms, one could
use the recently fabricated beam splitters for guided atoms
[24] to study two particle interferometry. Next is the ques-
tion of the special type of “which way” detectors required
for our scheme. A theoretical model of absorptionless path
detectors that keep spin unaffected has been considered
in the context of quantum state reduction [26]. Such
detectors have already been fabricated for electrons (based
on the effects of electric fields) for a complementarity
experiment [15], and there are also proposals for simple
variants of such detectors [27]. Detectors of the required
type have been suggested for photons (based on crossed
phase modulation) [28], and for neutrons (based on
momentum transfer) [29]. For atoms, one can implement
our scheme by placing cavities in the arms C and D to
act as our which way detectors. One would have to use an
atom with hyperfine ground levels jg1�, jg2�, jg3�, and jg4�
which can be made to interact with a cavity field in Fock
state jn� to undergo transitions jg1� jn� ! jg2� jn 1 1�
and jg3� jn� ! jg4� jn 1 1� [30]. Then, with an incident
state jAg1; Bg3�, appropriate transitions in cavities will
result in the entangled state 1

p
2

�jg2�D jg4�C 6 jg4�D jg2�C�
when both cavities are found in the state jn 1 1�. For
macromolecules, one can choose any two independent
degrees of freedom, one for entangling and the other for
path detection.

To summarize, we have presented a scheme of arbi-
trarily high efficiency for entangling two particles of any
type. This is important, as entangled states of objects
such as neutrons, electrons, or macromolecules are yet
to be prepared. Our scheme provides strong motivation
for developing two particle interferometry for various sys-
tems in tandem with absorptionless which way detectors.
That the same setup can be used to test quantum statistics
through entanglement-induced spin correlations and probe
complementarity in two-particle interference enhance the
significance of our scheme. Our work also suggests poten-
tial connections between entanglement, quantum statistics,
and complementarity, which call for further study (see, for
example, Ref. [31]).
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