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Nonequilibrium Phase Transitions in Directed Small-World Networks
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Many social, biological, and economic systems can be approached by complex networks of interacting
units. In many of these systems relations are directed in the sense that links act only in one direction
(outwards or inwards). We investigate the effect of directed links on the behavior of a simple spin-like
model evolving on a small-world network. This model may describe for instance the dynamics of public
opinion in social influence networks. We show that directed networks may lead to a highly nontrivial
phase diagram including first- and second-order phase transitions out of equilibrium.

DOI: 10.1103/PhysRevLett.88.048701 PACS numbers: 89.75.Hc, 05.70.Fh, 05.70.Ln
Complex networks have recently attracted an increasing
interest among physicists, the main reason being that they
seem to be exceedingly simple model systems of complex
behavior in real world networks [1,2], including chemical
reaction networks [3], food webs [4–6], the Internet [7,8]
and the World Wide Web [9], metabolic [10] and protein
networks [11], scientific collaboration networks [12], etc.
The hope is that the ideas and techniques, developed in
the past fifty years in the field of statistical physics to deal
with cooperative phenomena in many body systems, may
be useful to understand emergent complex behavior in sys-
tems outside the traditional realm of physics. In particular,
small-world (SW) networks, recently introduced by Watts
and Strogatz [13], have been very much studied because
they constitute an interesting attempt to translate the com-
plex topology of social, economic, and physical networks
into a simple model. SW networks result from randomly
replacing a fraction p of links of a d-dimensional regular
lattice with new random links. As a result of this ran-
dom rewiring, SW networks interpolate between the two
limiting cases of a regular lattice �p � 0� and completely
random graphs �p � 1�. Studies of real network data have
shown that SW-like topologies are found in situations as
diverse as the network of movie actors’ collaboration, the
electric power grid of Southern California, the network
of world airports, the acquaintance network of Mormons,
etc. [1,2].

Many topological properties of the SW model have re-
cently been investigated, as for instance, the shortest-path
distance and clustering coefficient [13,14], the crossover
from regular to SW behavior occurring at p � 0 [15], a
mean-field solution [16], and percolation on SW networks
[17], among others. Specifically, SW models are expected
to play an important role in understanding the interplay be-
tween the underlying disordered network and the dynamics
of many social or economic processes, such as distribution
of wealth, disease spreading, transmission of cultural traits,
and formation of public opinion [1].

In the language of social network analysis [18], sites
are referred to as actors. Actors may represent individu-
als, companies, airports, countries, etc., depending on the
social or economic process we are interested in. Actors are
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linked to one another by a relational, social, or physical
tie as, for instance, friendship, business transactions, flight
connections, kinship, or scientific collaboration, among
many others. Some of those relational links are symmetric,
in the sense that if Alice is tied to Bob, then Bob must also
be tied to Alice, as occurs, for instance, in the authorship
of scientific papers. However, many other networks are
directed and exhibit links that are definitely asymmetric,
as for instance, in the case of networks of the import and
the export of goods, World Wide Web page links, lend-
ing transactions, food webs, cultural influences, etc. In
directed networks then, when Alice is tied to Bob, Bob
may not be linked to Alice but to someone else instead.
Asymmetric synaptic strengths have already been shown
to be very important in trying to describe the process of
learning in realistic neural network model approaches to
brain function [19,20].

Several models have recently been studied in order to
understand the effect of SW topology on classical systems
such as the Ising model [14] or the spread of infections
and epidemics [21,22]. Such simple models are expected
to capture the essential features of the more complicated
processes taking place on real networks. However, as men-
tioned earlier, many social, commercial, or biological rela-
tions are asymmetric and the following question naturally
arises: What is the effect of directed links on a simple
model that evolves on the network?

In this Letter, we investigate the effect of directed SW
topology on the behavior of a simple model. In case only
undirected links are used, our model becomes identical to
the classical Ising model on a standard (undirected) SW
network [14]. This allows us to study, in a systematic
way, the effect of directed ties on this classical model. We
find that the existence of directed links completely changes
the behavior of the system from mean-field behavior (for
undirected networks) to a highly nontrivial and rich phase
diagram in the case of directed networks. By means of
extensive numerical simulations, we find that, for rewiring
probabilities in the range 0 , p , pc, the model exhibits
a line of continuous phase transitions from an ordered to a
disordered state. Those phase transitions occur at a criti-
cal value of the temperature Tc�p�, which depends on p.
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However, for higher disorder densities pc , p # 1, the
phase transition becomes first order. Our results show that,
in order to model biological, social, or economic processes
on complex networks, it is crucial to take into account
the character, directed or undirected, of the corresponding
relational links.

The model.—We have studied directed networks in d �
1 and 2. For simplicity, we focus here on d � 2, and fur-
ther results in d � 1 will be published elsewhere. In or-
der to construct a directed SW network, we start from a
two-dimensional square lattice consisting of sites linked to
their four nearest neighbors by both outgoing and incom-
ing links. Then, with probability p, we reconnect near-
est-neighbor outgoing links to a different site chosen at
random. After repeating this process for every outgoing
link, we are left with a network with a density p of SW
directed links, as shown in Fig. 1. Note that by this proce-
dure every site will have exactly four outgoing links and a
varying (random) number of incoming links. Generaliza-
tion to higher dimensions is straightforward.

Adopting social network nomenclature, actors are then
placed at the network sites. Any given actor is connected
by four outgoing links to other actors, which we call mates.
We allow every actor to be in one of two possible states,
so that, at any given time, the state of an actor is described
by a binary spin-like variable si [ �11, 21�. Depending
on the state of their mates, an actor may change its state
according to a majority (ferromagnetic) rule: Actors prefer
to be in the same state as their mates. In order to implement
this, we introduce the payoff function:

G�i� � 2si

X

mates of i

sj , (1)

where the sum is carried out over the four mates of ac-
tor i. Note that this payoff function is positive whenever

FIG. 1. Sketch of a directed small-world network constructed
from a square regular lattice in d � 2. For the sake of clarity,
only a few links have been reconnected. Arrows indicate the di-
rection of the corresponding link. Dotted lines represent rewired
links. Note that every site always has four outgoing links.
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si points in the same direction as the majority of its four
mates. External noise is included to allow some degree
of randomness in the time evolution by means of a tem-
peraturelike parameter, T , which we shall call temperature
for short from now on. For a given value of the external
temperature, the update of the model is then performed as
follows: At each time step, an actor (network site) is ran-
domly chosen and its corresponding payoff function G�i�
is computed according to Eq. (1). If G�i� , 0, actor i is
opposing its mates’ majority and the change si ! 2si is
accepted. Unfavorable changes, i.e., when G�i� . 0, are
accepted with probability exp�2G�i��T�, which depends
on temperature in the usual fashion.

Concerning the physics of the above defined model,
there are two interesting points that should be explicitly
mentioned. On the one hand, the model is nonequilibrium
since detailed balance is not satisfied. On the other hand,
the model is not simply the asymmetric counterpart of the
Ising model, since the payoff function G�i� in Eq. (1) does
not include the corresponding interaction terms coming
from the ingoing links [needed in order to identify G�i�
with the energy change after a spin update in the asym-
metric Ising model]. In fact, one can easily see that the
payoff function G�i� of our model cannot be written as a
variation of any Hamiltonian. However, we would like to
remark that, if only symmetric links are allowed, our model
becomes exactly equal to the (equilibrium) Ising model in
an undirected SW network that was studied in Ref. [14].
This can be seen by a simple comparison of the payoff
function Eq. (1) with the change of energy after a spin up-
date in the standard (symmetric) Ising ferromagnet. In this
case, it is known that the system presents mean-field be-
havior for any value of the disorder p . 0 [14].

Results.—We have carried out extensive numerical
simulations of the model for different values of the density
of SW directed ties p and temperature. Our results are
qualitatively the same for directed networks generated
from regular lattices in d � 1 and 2. In the following, we
focus on d � 2. We have simulated the model in directed
SW networks generated from L 3 L square lattices for
sizes ranging from L � 8 to 100 and different rewiring
probabilities p [ �0, 1�. The system is left to evolve
until, after some transient, a stationary nonequilibrium
state is reached. The stationary state can be described by
the appropriate order parameter, which can be defined in
a natural way by means of the “magnetization” per site:

m �
1
L2

L2X

i�1

si . (2)

We find that the system becomes ordered, i.e., �jmj	 fi 0,
below a critical temperature Tc�p�, so that most actors
are, in average, in the same state. In Fig. 2 the average
absolute value of the order parameter is plotted vs tem-
perature for two different values of the disorder p � 0.1
and 0.9, calculated in systems of different sizes. For ev-
ery system size L2, results were averaged over both, ten
runs of the dynamics for each network realization and
048701-2



VOLUME 88, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 28 JANUARY 2002
1.5 2.5 3.5
T

0

0.2

0.4

0.6

0.8

<
|m

|> L=12
L=25
L=50
L=100

0.2

0.4

0.6

0.8

1
<

|m
|> L=12

L=25
L=50
L=100

FIG. 2. Order parameter vs T for different system sizes. For
p � 0.1 (top panel), the transition is continuous. For a higher
disorder density, p � 0.9, the transition becomes first order
(bottom panel).

n different realizations of the network, in such a way
that n 3 L2 
 1.5 3 105. Figure 2 shows that the order-
disorder transition is continuous (top panel) for a low dis-
order density, while it becomes discontinuous for a higher
concentration of directed SW links (bottom panel). A
more systematic study of the phase diagram, as shown in
Fig. 3, reveals that there is a line of continuous phase tran-
sitions for disorder densities below some critical value pc.
Very interestingly, the transition becomes first order above
pc, indicating that there exists a nonequilibrium tricritical
point at pc. We estimate pc to be roughly at pc � 0.65�5�.
The character, continuous or discontinuous, of the phase
transition is better realized when looking at the probabil-
ity density function (PDF) of the order parameter. For the
sake of illustration, the insets of Fig. 3 show typical PDFs
at points of the phase diagram �p, T�, all near the critical
line. From those PDFs, one can see that the phase tran-
sition is second order from Figs. 3a to 3b, in the region
p , pc. In contrast, for p . pc the transition is discon-
tinuous, from Fig. 3c to 3d. The most probable values of
m, which correspond to the two equally highest symmet-
ric peaks in Fig. 3c, become unstable in favor of m � 0 as
the transition line is crossed towards Fig. 3d. The transi-
tion occurs in such a way that the order parameter exhibits
a finite jump at the critical line.

The critical behavior of the model in the region p , pc,
where transitions are continuous, can be studied in detail.
We find that the order parameter exhibits finite-size scal-
ing with exponents that depend on the disorder density p.
Close to the critical point, jtj ! 0, we have �jmj	 � jtjb ,
where t � �T 2 Tc��Tc is the reduced temperature. At
the critical point, t � 0, the order parameter scales with
system size as �jmj	 � L2b�n , where n is the correla-
tion length exponent. Figure 4 displays the behavior of
�jmj	 vs L for two disorder densities p � 0.1 and 0.5 be-
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FIG. 3. Phase diagram of the model. The system is in the
ordered state below the line. Points are numerical determina-
tions of the critical temperatures Tc�p� for different degrees
of disorder. The transition is continuous for small values of
p (circles), while it becomes discontinuous for p larger than
pc 
 0.65 (filled circles). The insets show the PDFs of m
for a) p � 0.1, T � 2.68; b) p � 0.1, T � 2.70; c) p � 0.9,
T � 2.498; d) p � 0.9, T � 2.500. Simulations were per-
formed in a 100 3 100 sites network.

low pc 
 0.65. Only for T � Tc�p�, a power law is ob-
tained and the slope of the straight line in a log-log plot
gives an estimation of the ratio b�n between critical ex-
ponents. From Fig. 4 we obtain that, for p � 0.1 and
p � 0.5, b�n � 0.53�2� and 0.40�3�, respectively. More-
over, from data collapse analysis (not shown) at the corre-
sponding Tc�p�, we have b � 0.50�3�, n � 0.94�6� and
b � 0.30�3�, n � 0.80�3� for p � 0.1 and p � 0.5, re-
spectively. These critical exponents are different from both
mean-field �b � n � 1�2� and exact values (b � 1�8
and n � 1) for the Ising model in d � 2.

Conclusions.—Many social, economic, and biological
networks in the real world exhibit directed ties or rela-
tions. This may be modeled by including directed links
in the corresponding complex network model. In addition,
spin-like models, borrowed from statistical physics, have
recently been proposed as toy models to understand some
social processes, as for instance, conflict vs cooperation
among coalitions [23,24] or formation of cultural domains
[25]. We claim that the directedness of the network may
strongly affect the behavior of simple processes evolving
on complex networks. We studied the effect of a directed
small-world topology on a very simple spin model. This
model may be thought of as a simple description of the
dynamics of public opinion in real social networks, where
individuals are represented by actors, social influence by
directed links, and the spin variables mimic individuals’
state of opinion. Our model becomes equal to the Ising
model when all links are undirected. From numerical
simulations we showed that, when directed links exist, the
phase diagram of the model is nontrivial. We found that
048701-3
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FIG. 4. Finite-size scaling of the order parameter for p � 0.1
(hollow symbols) and p � 0.5 (filled symbols), both below
pc. Power-law behavior is obtained for T � 2.700�2� and T �
2.635�3� for p � 0.1 (squares) and p � 0.5 (filled squares),
respectively.

the system exhibits continuous phase transitions for dis-
order densities below a critical threshold pc 
 0.65. For
stronger disorder, the transition is first order. At this stage
we can only speculate that the competition among weekly
coupled clusters may be related to the existence of first-
order transitions.

We believe that the effect of directed links may be
relevant in other types of disordered networks, such as
free-scale networks, and different dynamical models. In
trying to model real systems, directed links may play an
important and unforeseen role.
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