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Private Entanglement over Arbitrary Distances, Even Using Noisy Apparatus
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We give a security proof of quantum cryptography based entirely on entanglement purification. Our
proof applies to all possible attacks (individual and coherent). It implies the security of cryptographic
keys distributed with the help of entanglement-based quantum repeaters. We prove the security of the
obtained quantum channel which may not be used only for quantum key distribution, but also for secure,
albeit noisy, transmission of quantum information.

DOI: 10.1103/PhysRevLett.88.047902 PACS numbers: 03.67.Dd, 03.67.Hk
Quantum cryptography (QC) promises the security
of data transmission against any eavesdropping attack
allowed by the laws of physics. The first QC protocol was
described by Bennett and Brassard as early as 1984 [1].
Later, in 1991 Ekert presented a scheme based on Bell’s
theorem [2]. Though the security of these protocols is easy
to prove under ideal conditions, a lot of work has been
spent to prove the security under realistic circumstances.
In all QC protocols, a possible eavesdropper is identified
because of the disturbance that he or she introduces
when trying to gain information about a quantum state
that is transmitted. The problem is that every quantum
channel introduces innocuous noise itself, which cannot,
in principle, be distinguished from noise introduced by an
eavesdropper. For that reason, a proof of unconditional
security of QC has to assume that all noise in the channel
is due to the interference of an eavesdropper.

Two different techniques have been developed to deal
with these difficulties: Classical privacy amplification al-
lows the eavesdropper to have partial knowledge about
the raw key built up between the communicating par-
ties Alice and Bob. From the raw key, a shorter key is
“distilled” about which Eve has vanishing (i.e., exponen-
tially small in some chosen security parameter) knowl-
edge. Despite the simple idea, proofs taking into account
all eavesdropping attacks allowed by the laws of quantum
mechanics have shown to be technically involved [3–5].
Recently, Shor and Preskill [6] have given a simpler physi-
cal proof relating the ideas in [3,4] to quantum error cor-
recting codes [7,8]. Quantum privacy amplification (QPA)
[9], on the other hand, employs an entanglement purifica-
tion [10,11] protocol that eliminates any entanglement with
an eavesdropper by creating a few perfect EPR pairs out
of many imperfect (or impure) EPR pairs. In principle,
this method guarantees security against any eavesdropping
attack. However, the problem is that the QPA protocol
assumes ideal quantum operations. In reality, these opera-
tions are themselves subject to noise. As shown in [12,13],
there is an upper bound Fmax for the achievable fidelity
of EPR pairs which can be distilled using noisy apparatus.
A priori, there is no way to be sure that there is no residual
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entanglement with an eavesdropper. This problem could be
solved if Alice and Bob had fault tolerant quantum com-
puters at their disposal, which could then be used to reduce
the noise of the apparatus to any desired level. This was
an essential assumption in the security proof given by Lo
and Chau [14].

In this Letter, we show that the standard two-way en-
tanglement purification protocols alone, with some mi-
nor modifications to accommodate certain security aspects
which will be discussed below, can be used to efficiently
establish a perfectly private quantum channel, even when
both the physical channel connecting the parties and the lo-
cal apparatus used by Alice and Bob are noisy. This is of
particular interest because, as we show, the security thresh-
old for the noise level of the apparatus practically coincides
with the purification threshold, so that the methods used
for long-distance quantum communication, using entan-
glement-purification-based quantum repeaters [12] can be
used for secure quantum communication without any fur-
ther requirements. In particular, no fault tolerant quantum
computers are required. This goal is achieved by proving
that the final state of the protocol factorizes into a product
state of the eavesdropper on one side, and Alice, Bob, and
their laboratories (apparatuses) on the other side. Collo-
quially speaking, we prove that Eve is factored out under
the action of the purification protocol, i.e., the finite fidelity
at the end of the protocol is only due to entanglement with
the apparatus. Our proof applies to all possible attacks (in-
dividual, collective, and coherent) and can be utilized di-
rectly in long-distance quantum communication. Different
from existing work, we (i) prove the security of the entire
quantum channel, (ii) do not require fault tolerant quantum
computers, and (iii) our results have practical relevance, as
the accuracy of the apparatus used by Alice and Bob may
be about 2 orders of magnitude lower than the threshold
accuracy for fault tolerant quantum computers [12,15].

The scenario is the following. Initially, Alice
and Bob share a numbered ensemble of 2N qubits
��a1, b1�, . . . , �aN , bN ��, N qubits on each side, where N is
large. Most generally, the state they obtain can be written
in the form
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where jB
�aj bj�
mj �, mj � 00, 01, 10, 11 denote the 4 Bell

states associated with the two particles aj and bj. Specifi-
cally, jBik� � �1�

p
2� �j0k� 1 �21�ij1, k 1 1mod 2�� for

i, k [ �0, 1�. The qubits have been distributed through
some noisy channel, which may also include repeater sta-
tions involving additional qubits. Note that for the follow-
ing proof the repeater stations may be entirely under Eve’s
control. In general, (1) will be an entangled state of 2N
particles, which allows for the possibility of so-called co-
herent attacks [16]. This state may be used to establish
a perfectly secret quantum channel, under the condition
checked by the following protocol.

Upon reception of all pairs, Alice and Bob apply the
following protocol to them. Note that steps 1 and 2 are
applied only once, while steps 3, 4, and 5 are applied
recursively.

Step 1: On each pair of particles �aj, bj�, they apply

randomly one of the four bilateral Pauli rotations s
�aj�
k ≠

s
�bj�
k , where k � 0, 1, 2, 3.
Step 2: Alice and Bob randomly renumber the pairs,

�aj , bj� ! �ap� j�, bp� j�� where p� j�, j � 1, . . . , N is a
random permutation.

After step 2, Alice and Bob may consistently describe
the ensemble by the density operator [17]

r̃AB �

√X
m

pmjBm� �Bmj

!≠N

� �rab �≠N , (2)

in which the pm describe the probability with which each
pair is found in the Bell state jBm� [18]. At this point,
Alice and Bob have to make sure that p00 � F . Fmin
for some minimum fidelity Fmin . 1�2, which they can
do by statistical tests on a certain fraction of the pairs.
The exact value of Fmin depends on the noise parameters
of Alice’s and Bob’s apparatus [12,13].

Next, Alice and Bob apply one of the standard purifi-
cation protocols as described in [9,10]. For simplicity, we
concentrate on the protocol given in [9]; for other recur-
rence protocols, a similar proof could be given [19]. The
protocol uses these steps.

Step 3: Bilateral rotations 1�2�1�a� 2 is
�a�
x � ≠ �1�b� 1

is
�b�
x � are applied to all pairs �a, b�.
Step 4: To all pairs of pairs a bilateral CNOT operation

(BCNOT) is applied.
Step 5: The target pair of the BCNOT operation is mea-

sured on both sides in the z direction. If the measurement
results coincide, the control pair is kept, otherwise it is
discarded.

Since Alice and Bob use imperfect apparatus, it has
been shown [12,13] that these protocols converge towards
a mixed-state ensemble r

�`�
ab with a maximum attainable

fidelity Fmax , 1. If the fidelity of the local operations is
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moderate, the value of Fmax could be quite low (80%, as
an example).

In the following we will show that, despite such a poor
attainable fidelity, Alice and Bob may happily proceed to
apply the purification protocol to establish a secure quan-
tum channel [20]. We show that, as F ! Fmax, the entan-
glement of the ensemble with the eavesdropper is reduced
exponentially fast with the number of purification steps.
In each step of the protocol, we assume that the apparatus
introduces errors described by the following map:

rAB !

3X
m,n�0

fmns�a�
m s�b�

n rABs�a�
m s�b�

n , (3)

where a and b denote the qubits which are acted upon lo-
cally. The fmn can be interpreted as the joint probability
that the Pauli rotations sm and sn are applied to qubits a
and b, respectively. Equation (3) includes, for an appro-
priate choice of the coefficients fmn , the one and two qubit
depolarizing channel and combinations thereof, as studied
in [12], but is more general.

It is possible to include the laboratories’ degrees of free-
dom in the description. Noise of the form (3) can be at-
tributed to some interaction with the apparatus, which is
described by a map

jE�Ljc�AB !

3X
m,n�0

jemn�Ls�a�
m s�b�

n jc�ab�� . (4)

This map explicitly accounts for the state of the apparatus
before and after the interaction. The states jemn� are pair-
wise orthogonal and have the norm �emnjemn� � fmn. It
is important to note that the laboratory degrees of freedom
jemn� can, in principle, be identified in any physical envi-
ronment that generates noise of the form (3), if the specific
interaction Hamiltonian is known.

For our purpose, however, the physical details of the en-
vironment are of no concern, and we may replace the real
process by the following scenario, where both Alice and
Bob have a “little demon” (L) in the laboratory. For sim-
plicity, we concentrate on the demon in Alice’s laboratory
only. Note that the generalization to noise in both labs is
trivial. Before every purification step, the demon applies
randomly one of the 16 rotations s�a�

m ≠ s�b�
n to the qubits

involved in this step, and keeps a record of which rota-
tions he chose. For example, in the case of uncorrelated
white noise (depolarizing channel), it leaves each qubit in
its state �s0 � I� with some probability f0, but rotates its
state by sj with equal probabilities fj �

12f0

3 .
By doing this, the demon may accumulate a record of all

errors in the history of each qubit throughout the process.
Instead of keeping track of this growing list, he updates
in each purification step a single flag f � �ij� that is as-
sociated with each of the pairs. The purpose of the error
flag is to keep the information required for “undoing” the
random rotations that occurred in the history of each pair.
Note that, while this can be done trivially for unitary net-
works, the situation is quite different with the QPA distilla-
tion protocol, which includes measurements. Technically,
the flag consists of two classical bits, called the error phase
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bit i and the error amplitude bit j, and is calculated in the
following way: If a sx�sz , sy� error occurs, L inverts the
error amplitude bit (error phase bit, both error bits).

Whenever Alice and Bob agree publicly to keep a con-
trol pair P1 (because of coinciding measurement outcomes
on the target pair P2, see step 5 of the protocol), L “up-
dates” the value of the error flag �iuju� of the kept pair
with the flag update function: �iuju� � �i © i0, i © j� if
i0 © j0 © i © j � 0, and �iuju� � �0, 0� otherwise. Note
that the error flag which belongs to a pair is, by construc-
tion, only a function of the error record. It is important to
realize that what the lab demon is doing is not quantum
error correction, as he is not applying any correction op-
eration on the qubits during the entire protocol. Instead of
calculating the flags during the run of the protocol, they
could equally be calculated after the protocol is finished.

At each purification step, the lab demon divides the
total ensemble into four subensembles r

�ij�
AB corresponding

to the value �ij� of the error flag. Initially, before the
QPA protocol starts, he assigns some random or fixed
values to the labels, while the subensembles are all
described by the same state. That is, the error flags
and the states of the pairs are initially completely un-
correlated. It is noteworthy that Bell diagonality of
the states r

�ij�
AB � A�ij�jB00� �B00j 1 B�ij�jB11� �B11j 1

C�ij�jB01� �B01j 1 D�ij�jB10� �B10j is preserved. This is
due to the fact that all operations in the protocol map Bell
states onto Bell states.

In the following, we analyze the purification process in
terms of these four different subensembles r

�ij�
AB. In total,

we have to keep track of 16 coefficients that occur in the
expansion of each of the r

�ij�
AB in the Bell basis. These

coefficients after the �n 1 1�th QPA step are functions of
the coefficients after the nth QPA step:

A�00�
n ! A

�00�
n11�A�00�

n , A�01�
n , . . . , D�11�

n � ,

A�01�
n ! A

�01�
n11�A�00�

n , A�01�
n , . . . , D�11�

n � ,
...

(5)

D�11�
n ! D

�11�
n11�A�00�

n , A�01�
n , . . . , D�11�

n � .

The explicit form of the 16 recurrence relations (5)
can be given, but they are rather lengthy. They imply a
reduced set of 4 recurrence relations for the quantities
An �

P
ij A

�ij�
n , . . . ,Dn �

P
ij D

�ij�
n which describe the

evolution of the total ensemble under the purification
protocol. For n ! `, these quantities converge towards
a fix point �A`, B`, C`, D`� where A` � Fmax is the
maximal attainable fidelity [12]. Different from the
fidelity Fn � An, we define the conditional fidelity
Fcond

n � A
�00�
n 1 B

�11�
n 1 C

�01�
n 1 D

�10�
n . This is the

fidelity of the ensemble that Alice and Bob could attain, if
the lab demon disclosed the error flags (or, for that matter,
only the history of the random rotations, from which
the flags can be calculated): Depending on the error
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flag of a pair, Alice could then choose a local rotation
that transforms the pair into the Bell state jB00� with
probability Fcond.

Evaluation of the recurrence relation yields that there
are three different regimes of noise parameters: In the
high-noise regime (low values of f00), no purification is
possible; the protocol converges to completely depolarized
pairs. In the low-noise regime (high values of f00), the
protocol purifies and the conditional fidelity converges to
unity: the protocol is in the security regime (see Fig. 1).
Between these two regimes, just above the purification
threshold, there exists a very narrow third regime: The
protocol purifies, while the conditional fidelity does not
converge to unity. It is not known whether or not secure
communication is possible in this regime. For the depo-
larizing channel, for example, the intermediate regime is
contained in the interval f0 [ �0.8983, 0.8988�, while the
security regime covers the entire interval f0 [ 	0.8988, 1
.
The security regime thus coincides, for all practical pur-
poses, with the purification regime, but it is interesting to
see that these regimes are not strictly identical. It shows
that the process of factorization is, in the situation of im-
perfect apparatus, not trivially connected to the process
of purification. More details about these regimes will be
published elsewhere [17]. When the protocol is in the
security regime, both the fidelity Fn and the conditional
fidelity Fcond

n reach their respective fix points exponen-
tially fast with the same exponents (see Fig. 2). From
this it follows that there exists a polynomial relation be-
tween the resources used in the purification process (num-
ber of initial pairs) and the security parameter 1 2 Fcond.
All results obtained from the evaluation of the recurrence
relations (5) were also checked with the help of Monte
Carlo simulations, in which the QPA protocol was applied
to typical ensembles of Bell states.

FIG. 1. The fidelities F and Fcond as a function of the number
of steps in the QPA protocol [analytical results (lines) and Monte
Carlo simulation (circles)]. For the calculation, one- and two-
qubit white noise with a noise fidelity of 97% has been assumed.
The Monte Carlo simulation was started with 107 pairs; the
numbers indicate how many pairs are left after each step of the
purification protocol. This decreasing number is the reason for
the increasing fluctuations around the analytical curves.
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FIG. 2. F` 2 Fn and 1 2 Fcond
n plotted logarithmically

against the purification step n. The parameters are the same as
in Fig. 1.

Our results imply that the error flags and the states of
the subensembles become strictly correlated during exe-
cution of the purification protocol: The subensemble �ij�
ends in the state jBij�. In other words, the little demon
has acquired complete knowledge about the states of all
pairs after sufficiently many purifications steps; the sys-
tem consisting of the pairs and the lab is thus in a pure
state. Now the same argument as in [9] applies: a sys-
tem in a pure state cannot be entangled with any other
system— any eavesdropper is factored out, as his or her
entanglement with the pairs is lost.

This proof can be extended to more general noise mod-
els if a slightly modified protocol is used, where step 1
is repeated after every distillation round [21]. This ef-
fectively regularizes any type of local noise process to a
process of the type (3) that conserves the Bell diagonality
of the ensemble, for which we can apply the lab-demon
interpretation [22].

The fact that the security regime of the protocol almost
coincides with the purification regime is of strong practical
interest because it implies that EPR pairs distributed over
long distances with quantum repeaters can be directly used
for secure quantum communication [23].

To summarize, Alice and Bob obtain, with the help of
a standard entanglement purification protocol, entangled
EPR pairs. These pairs have a limited fidelity F & Fmax ,

1 which depends on the noise introduced by local opera-
tions in their laboratory. Alice and Bob may nevertheless
use these pairs for secure quantum or classical commu-
nication, e.g., teleportation [24] or key distribution. At
this stage, no further security tests are necessary. Since
we have shown that there exists no residual entanglement
with an eavesdropper, they may use all the pairs for the key.
While there may be a significant error rate in the message,
Alice and Bob are allowed to apply classical error cor-
rection to the transmitted message without disclosing any
valuable information to Eve.
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