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Antiferromagnetism from Phase Disordering of a d-Wave Superconductor
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The unbinding of vortex defects in the superconducting condensate with d-wave symmetry at T � 0
is shown to lead to the insulator with incommensurate spin-density-wave order. The transition is similar
to the spontaneous generation of the chiral mass in the three-dimensional quantum electrodynamics. A
possible relation to recent experiments on underdoped cuprates is discussed.
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A common feature of all high-temperature superconduc-
tors is that undoped they are Mott insulators with antifer-
romagnetic order [1]. The central theme of the theories of
cuprate superconductivity has therefore been to establish
the connection between the insulating and the supercon-
ducting phases. Most of the work followed the usual route
that suggests starting from the nonsuperconducting, in this
case, Mott insulating phase, and trying to understand how
it becomes superconducting. This approach was spectacu-
larly successful for the conventional (low-Tc) supercon-
ductors, in part because the nonsuperconducting phase was
a well understood metallic Fermi liquid. In cuprates, how-
ever, one does not enjoy this luxury, and the Mott insulator
is strongly interacting and notoriously resistant to simple
theoretical understanding. This suggests one should look
for alternative points of view that may be better adapted
to the problem at hand. Since experimentally the super-
conducting phase seems to be a rather standard BCS-like
d-wave state, one strategy would be to take this as a van-
tage point for further exploration of the cuprates phase
diagram [2,3]. Particularly interesting is the underdoped
region, where experiments show a large pseudogap for
spin excitations, and the superconductor-insulator transi-
tion at low temperatures.

In this Letter I subscribe to the dual approach advocated
above and show that the d-wave superconducting state
(dSC) at T � 0 has an instability towards the insulator
with the incommensurate spin density wave (SDW) order.
Using the Franz-Tešanović transformation I derive the
low-energy theory for the coupled system of d-wave
quasiparticles and fluctuating vortices. Upon integration
over vortices the theory takes the form of the (anisotropic)
�2 1 1�-dimensional quantum electrodynamics (QED3)
for two Dirac four-component spinors, which are related
to the nodal quasiparticles by a singular gauge transfor-
mation, and are minimally coupled to the transverse gauge
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field [3]. First, I show that the role of the coupling con-
stant (or the “charge”) in this gauge theory is at T fi 0
played by the thermodynamic fugacity of the vortex sys-
tem. In the superconducting phase the charge is therefore
zero, vortices are bound into pairs, and the gauge field is
decoupled from the fermions. In the nonsuperconducting
phase, on the other hand, the fugacity is finite, and the
gauge field now mediates a long-range interaction between
the Dirac fermions. The main result is that, at T � 0
where the role of fugacity is played by the condensate of
vortex loops, this interaction leads to an instability towards
the incommensurate SDW order, through a condensed-
matter equivalent of the chiral symmetry breaking phe-
nomenon [4]. The T � 0 transition from the dSC into the
SDW may be understood therefore as an instability of the
gapless nodal fermionic excitation in the presence of free
topological defects towards the formation of bound states.
Possible connections between recent neutron scattering,
angle-resolved photoemission spectroscopy (ARPES), and
scanning tunneling microscopy (STM) experiments are
discussed in light of this result.

What follows rests on two postulates: (1) that there is
a d-wave superconducting state in the phase diagram with
sharp gapless quasiparticle excitations, and (2) that the am-
plitude of the superconducting order parameter may be as-
sumed finite and inert much below the high pseudogap
temperature T�, so that the only other relevant excita-
tions are the topological defects in its phase (vortices and
antivortices at T fi 0, or vortex loops at T � 0). The
first postulate is supported by the microwave [5] and the
ARPES experiments [6], and the second by the measure-
ments of the frequency dependent conductivity [7] and the
Nernst effect in the pseudogap regime [8]. I begin by con-
structing the continuum, low-energy theory for the nodal
quasiparticles in the d-wave state, using a different repre-
sentation than in [2,3]. The quasiparticle Hamiltonian is
Hqp � T
X

�k,s,vn

��ivn 2 j �k�cys��k, vn�cs� �k, vn� 2 D��k�cys� �k, vn�cy2s�2�k, 2vn� 1 c.c.� , (1)

where D��k� has the usual d-wave symmetry, and two spatial dimensions (2D) are assumed. c and cy are the elec-
tron operators, s � 6 labels spin, and vn are the fermionic Matsubara frequencies. In my units h � c � e � 1. Next,
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introduce two four-component Dirac spinors

C
y
1�2�� �q, vn� � �cy1� �k,vn�, c2�2�k, 2vn�, cy1� �k 2 �Q1�2�, vn�, c2�2 �k 1 �Q1�2�, 2vn�� , (2)

where �Q1�2� � 2 �K1�2� is the wave vector that connects the nodes within the diagonal pair 1(2). For the spinor 1, �k �
�K1 1 �q, with j �qj ø j �K1j (see Fig. 1), and analogously for the second pair. One has j �k � j2�k, and near the nodes,
j�k � 2j�k2 �Q1�2�

, and D �k � 2D�k2 �Q1�2�
, for �k � �K1�2�. Retaining only the low-energy modes in (1), and linearizing the

spectrum as j�k � yfqx and D�k � yDqy , one arrives at the continuum field theory

S�C� �
Z

d2 �r
Z b

0
dt C̄1�g0≠t 1 g1yf≠x 1 g2yD≠y�C1 1 �1 ! 2, x ! y, y ! x� , (3)
where C̄ � Cg0, and the matrices g0 � s1 ≠ I, g1 �
s2 ≠ s3, and g2 � 2s2 ≠ s1 satisfy the Clifford algebra
�gm, gn� � 2dm,n. Here �s are the Pauli matrices, and the
coordinate system has been rotated as in Fig. 1.

Next, assume that the transition out of the dSC in the
underdoped regime is due to the unbinding of the topo-
logical defects. This raises a rather nontrivial question of
how to properly couple the vortex degrees of freedom to
quasiparticles [2]. Fortunately, this has recently been ele-
gantly solved by Franz and Tešanović [3,9]. Their idea
is to split the phase of the order parameter D��r ,t� �
jDj expi�fs��r, t� 1 fr��r , t��, where fs�r� is the singular
(regular) part of the phase in the presence of vortices, into
two contributions, fs 1 fr � fA 1 fB, with

= 3 =fA��r, t� � 2p

NAX
iA�1

qiAd��r 2 �riA�t�� , (4)

where qiA � 61 is the unit vorticity of a �hc�2e� vortex
(antivortex) defect, tracked by its coordinate in the imagi-
nary time �ri�t�, and analogously for vortices in B. Here
= � �≠t, ≠x ,≠y �. The division of vortices into two groups
A and B is at this point arbitrary, and fr is to be equally
split between fA and fB. By making the singular gauge
transformation in (1) from electrons into electrically neu-
tral fermions c1�2� ! c1�2� expifA�B�, one immediately
discovers that there is a hidden gauge field in the prob-
lem, am � 1

2 ≠m�fA 2 fB�, m � 0, 1, 2, that enters the
theory (3) via minimal coupling ≠m ! ≠m 2 iam. The

K1
K

2

q x

q y

a

b

FIG. 1. The wave vectors �K1, �K2, and �q.
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regular part of the phase fr cancels in �a, which is entirely
due to vortices. fr is contained in the second Doppler
gauge field, ym � 1

2 ≠m�fA 1 fB�, which enters the the-
ory for the neutral fermions precisely as the true electro-
magnetic gauge field would. Gauge invariance protects
�a from becoming massive from the integration over fer-
mions, while such a protectorate does not exist for �y.
Power counting implies then that the coupling of fermions
to �y is irrelevant, and may and will therefore be dropped
hereafter.

It was argued in [3] that although �a cannot become
massive from fermions, it should be massive if vortices
are bound. Next I present a simple but a rigorous deriva-
tion of the dynamics of the gauge field �a at T fi 0, where
one can get away with the neglect of the quantum fluctua-
tions, which supports this insight. Assume a collection of
N1�N2� vortices (antivortices) at the positions � �ri�. The
energy of the (classical) vortex system is

Hy �
1
2

NX
i�1

qiqjy� �ri 2 �rj� , (5)

where y� �r� � 2 lnj�r j, at large distances, and N �
N1 1 N2. The partition function of the coupled system
of quasiparticles and vortices can be written as

Z �
Z

D�C� e2S�C, �a�Zy , (6)

where Zy is the grand-canonical classical partition function
of the vortex system (2D Coulomb plasma)

Zy �
X

N2
A ,N1

A ,N2
B ,N1

B

yN
R QN

i�1 d �ri e2Hy �T

2NN1
A !N1

B !N2
A !N2

B !
, (7)

where N1�2� � N
1�2�
A 1 N

1�2�
B , and y is the bare vortex

fugacity. To preserve the s ! 2s symmetry in the origi-
nal Hamiltonian in Zy I average over all possible divisions
of vortices and antivortices into groups A and B. This en-
sures that on average there is an equal number of vortices
(and antivortices) in both groups. Next, introduce the vor-
ticity densities in Zy by inserting the unity

1 �
Z

D�rA� d

"
rA� �r� 2

NAX
i�1

qiAd��r 2 �riA�

#
, (8)

and similarly for B. The gauge field then becomes

�= 3 �a� �r��t � 2p�rA��r� 2 rB� �r�� , (9)
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in the transverse gauge = ? �a � 0. Subindex t denotes the t component. �y is defined the same way except with the plus
sign between rA and rB. Performing then the Gaussian integrations over rA, rB, and �y, and the summations in Eq. (7)
exactly, yields Zy �

R
D�F1, F2, �a� exp�2Sy�F1, F2, �a��, with

Sy�F1, F2, �a� �
Z

d2 �r

∑
2T���=F1� �r����2 1

i
2p

F2� �r� ���= 3 �a��r����t 2 2y cos���F1��r���� cos���F2��r����
∏

. (10)
Real fields F6 � FA 6 FB are the Lagrange multipliers
introduced to enforce the constraints in Eq. (8) [10].

The partition function of the coupled system of d-wave
quasiparticles and vortices at T fi 0 is therefore Z �R
D�C, F1, F2, �a� exp�2S�C, �a� 2 Sy�F1,F2, �a�� with

S�C, �a� �
FX
i�1

Z
d2 �r

Z b

0
dt C̄igm�≠m 2 iam�Ci ,

(11)

with F � 2, and the x $ y exchange of the coordinates
for the i � 2 component is assumed. I have also set
yf � yD � 1 here for simplicity. The Dirac field C rep-
resents the neutral (gauge-transformed) fermions, and Sy

is given by Eq. (10). This is my first result. It has several
remarkable features. First, if one turns off the coupling to
fermions (by taking, formally, the quenched limit F � 0),
the integration over �a in (10) simply enforces F2 	 0. Sy

reduces then to the standard sine-Gordon theory, which is
known to provide the correct description of the Kosterlitz-
Thouless transition [11]. More importantly for our pur-
poses, for F � 0 one also finds


�= 3 �a� �r��t�= 3 �a��r 0��t� � 
 y�d��r 2 �r 0� , (12)

where 
 y� � y�2p�2
exp�iF1��, with the average to be
taken over Sy with F2 	 0. 
 y� may be recognized as
the thermodynamic, or the renormalized, fugacity of the
vortex system [11]. The integration over the fields F1 and
F2 is thus equivalent to reducing the action (10) to

Sy !
Z

d2 �r
�= 3 �a�2

t

2
 y�
(13)

in the partition function Z. In the dielectric phase of the
vortex system the field F1 is massless, and consequently

 y� � 0 [11], so the gauge field asymptotically decouples
from the fermions. Quasiparticles become sharp excita-
tions in the dSC, in agreement with the ARPES [6] and the
microwave measurements [5]. In the nonsuperconducting
phase, on the other hand, vortices are free, F1 becomes
massive, and 
 y� fi 0. This has profound consequences
for the fermions, as I discuss shortly.

At T � 0 quantum fluctuations need to be included,
as the topological defects in �2 1 1� dimensions become
vortex loops [12]. It seems clear on physical grounds,
however, that after the integration over the loops (apart
from the inherent anisotropy), the form of the action for
the gauge field should remain similar to Eq. (13), except
that �= 3 �a�2

t��2
 y�� ! �= 3 �a�2��2
 y��. This can also
be derived on a lattice, where one finds that the role of
the coupling 
 y� at T � 0 is assumed by the dual order
parameter that becomes finite only when there are infinitely
large loops in the system and which is tantamount to the
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loss of phase coherence [13]. This way one finally arrives
at the QED3 with the full Maxwell term for the transverse
gauge field �a as the relevant low-energy theory.

QED3 has been extensively studied by field theorists as
a nontrivial toy model exhibiting the phenomena of dy-
namical symmetry breaking and confinement [4]. In par-
ticular, it has been established that for the number of Dirac
fields F , Fc the interaction with the gauge field is strong
enough to spontaneously generate the so-called chiral mass
for fermions. I will demonstrate that the chiral mass in
the theory (11) is nothing but the SDW order parameter.
First, to acquire some sense for the chiral instability, con-
sider the fermion propagator. Neglecting the vertex and
the wave-function renormalizations, it can be written as
G21�p� � ignpn 1 S�p�, where the self-energy satisfies
the self-consistent equation

S�q� � 
 y�gm

Z d3 �p

�2p�3

Dmn� �p 2 �q�S�p�
p2 1 S2�p�

gn , (14)

with �q � �v,qx ,qy�. The gauge-field propagator in
the transverse gauge is Dmn � �dmn 2 p̂mp̂n���p2 1

P�p��, where P�p� is the self-consistently determined
polarization. Assuming m � S�0� fi 0 gives [4]

P�q� �

 y�F
2p

µ
m 1

q2 2 4m2

2q
sin21 qp

q2 1 4m2

∂
.

(15)

When this is inserted into Eq. (14), it can be shown that
there is a solution with a finite m only when F , Fc,
with Fc � 32�p2 [4]. More elaborate calculations that
fully include the wave-function renormalization and the
vertex corrections confirm this result, and yield Fc � 3
[14]. Simulations on the lattice version of the QED3 [15]
also find 3 , Fc , 4, in agreement with the analytical
estimates.

By reversing the transformations that led to the QED3
the reader can convince himself that the mass term for
neutral fermions is equivalent to the low-energy part of the
following addition to the electronic Hamiltonian (1):

mT
X

�k,s,vn, �q�6 �Q1,2

scys� �k 1 �q, vn�cs��k, vn� , (16)

so that the chiral mass may be identified with the SDW or-
der parameter (or the staggered potential) along the spin z
axis, and at the wave vectors �Q1,2. This is, of course, why
the particular construction of the Dirac field was made in
the first place. Note the following: (1) the SDW order is
induced already at an infinitesimal vortex fugacity, but it
is rather weak, m � 
 y��exp�2p�

p
�Fc�F� 2 1 � for F �

Fc [4], and (2) neutral fermions are bound (confined) at
047006-3
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large distances in the SDW, by the weak logarithmic po-
tential [provided by the fact that P�q� � 
 y�Fq2��6pm�
for q ø m]. With some anisotropy �yf fi yD�, the global
symmetry of the massless theory is only U�2� 3 U�2�, so
the mass term reduces each U�2� to U�1� 3 U�1�. The two
broken generators per Dirac field rotate the “cos-SDW”
in Eq. (16) into either the similar “sin-SDW,” or into the
phase-incoherent state with “d 1 ip” pairing between the
neutral fermions. SDW is therefore the only state that
can be obtained by the unbinding of vortex defects and
that respects parity. In the isotropic limit the massless
theory recovers the full U�4� symmetry and additional
broken symmetry states become available, like, remark-
ably, the stripelike charge density waves parallel to the a
or b axis [13].

Once it is realized that unbinding of vortices leads to the
SDW order, it becomes natural to wonder what the nature
of vortices inside the dSC could be. From the perspective
of this work it seems more than plausible that vortex cores
are actually in the insulating phase, so that by approaching
half-filling one lowers the core energy. In this picture the
chemical potential should be related to the bare vortex fu-
gacity, which when too large leads to the proliferation of
defects, in analogy to the Berezinskii-Kosterlitz-Thouless
transition [11]. The idea of SDW in vortex cores finds
some experimental support in the recent STM [16] and the
neutron scattering studies [17], as well as in the mean-field
calculations [18]. Furthermore, the present work suggests
that the superconductor-insulator transition should be ac-
companied by the appearance of the incommensurate SDW
correlations at the wave vectors �Q1,2, with the incommen-
surability increasing with doping. This is consistent with
the recent neutron scattering experiments [19] on the un-
derdoped LaSrCuO close to the superconducting transition.
Finally, the d-wave pseudogap should continuously evolve
into the insulating state, except for the gap that should de-
velop at the nodes. This also seems in agreement with the
observations [20].

To summarize, I showed how liberating topological de-
fects in the d-wave superconductor at T � 0 leads to the
incommensurate SDW, which is then expected to con-
tinuously evolve into the commensurate antiferromagnet
close to half-filling. Near the transition the SDW order
is inherently weak due to the relative closeness of the
two flavor QED3 to its chiral critical point at Fc � 3.
The SDW transition temperature near the superconductor-
insulator transition may therefore be expected to be much
lower than the corresponding superconducting Tc on the
other side of the transition, not in contradiction with the
known topology of the cuprates phase diagram. The issue
of a quantum-disordered (deconfined) ground state in this
approach reduces to whether Fc may, in fact, be smaller
than two. It has recently been argued that Fc # 3�2 [21],
in spite of the results of virtually every calculation vio-
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lating this bound. Recent numerical study on larger sys-
tems than in [15], for example, find a small, but definitely
a finite, mass at F � 2 [22]. A more interesting possi-
bility is that Fc may depend on some additional parame-
ter in the theory. For example, one may speculate that a
large anisotropy yf�yD � 10, which is certainly present
in cuprates, could affect Fc. This way Fc would become
doping dependent, which could open a route for the T � 0
deconfined phase in between the dSC and the SDW. Fur-
ther examination of this possibility, together with the issue
of the order of transition, effects of disorder and finite tem-
perature, and the relations to other theoretical approaches
to the high-Tc problem will be discussed in the future
longer publication [13].
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