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Conditions for Dynamic Localization in Generalized ac Electric Fields
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We examine the conditions for dynamic localization of electrons in a periodic potential due to an
applied ac electric field. Using a general one-band model, we establish the surprising result that only
electric fields that are discontinuous at all changes of sign can lead to exact dynamic localization. We
also develop a general procedure for constructing ac fields that yield dynamic localization and derive an
“area condition” for such fields. We confirm this result numerically in a multiband simulation.
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Over the past decades, the behavior of an electron in
a periodic potential in the presence of an applied elec-
tric field has attracted much attention. The behavior in
a dc field was discussed many years ago by Bloch [1]
and Wannier [2], and the predictions of localized station-
ary states—the Wannier-Stark ladder (WSL)—and their
dynamic analog, Bloch oscillations (BO), were observed
in semiconductor superlattices by Mendez et al. [3] and
Feldmann et al. [4], respectively. More recently, equiva-
lent phenomena were observed in trapped atomic systems
[5] and using light propagating in fiber Bragg gratings [6]
and coupled optical waveguides [7].

The recent development of strong, tunable THz radiation
sources has spurred interest in the dynamics in ac fields.
In combined ac and dc fields, one can observe multipho-
ton absorption [8], absolute negative conductance [9], and
fractional WSLs [10]. It was further predicted [11-15]
that, for a purely sinusoidal ac field in the nearest-neighbor
tight binding (NNTB) approximation, dynamic localiza-
tion (DL) can be achieved for particular field amplitudes.
DL is the phenomenon whereby an applied ac field results
in the continued localization of an initially localized wave
packet. However, if one goes beyond the NNTB approxi-
mation, DL disappears for a sinusoidal field [14], but can
be attained for a square-wave field with the correct ampli-
tude [16,17]. We refer to this type of DL, which occurs for
arbitrary band structures and not just in the NN'TB approxi-
mation, as exact dynamic localization (EDL). Here we
address the general question as to what types of ac fields
lead to EDL. We show that the only purely ac fields, E(t),
that can yield exact dynamic localization are never zero,
and hence are discontinuous at all changes in the sign of
the field. In fact, many fields that yield EDL may have
additional discontinuities where the field does not change
sign. We show that for ac fields that do not contain any
such nonessential discontinuities: If EDL is to be attained,
then the total area under the E(t) curve between disconti-
nuities must be an integral multiple of 27 h/ed, where d
is the period of the potential.
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Although most DL work refers to electronic systems,
many of the phenomena are generic and also occur for
atomic [5] and optical [6,7] waves. Though the arguments
below apply to all three wave types, we use the electronic
terminology for consistency with most of the existing lit-
erature. Throughout, we ignore the effects of dephasing;
this is justified for optical systems and is a common ap-
proximation in the electronic literature [11-15].

The dynamics of a wave packet in a periodic potential,
in an arbitrary external time-dependent electric field, has
not been solved analytically. However, within a one-band
approximation, exact closed form solutions are known.
Expanding the electron state, |1/(7)), in the basis of single-
band Wannier functions, |a,) [16], we obtain

(1)) = D Bu()lan). D

where n labels the localization site of the Wannier func-
tion |a,). Substitution into the Schrddinger equation, and
assuming lattice inversion symmetry, we obtain

ifBy =Y &4—mBn + nedE(t)B,, )

where the g, are the Fourier components of the band’s en-
ergy dispersion, €(k). One can show via direct substitution
that the solution to Eq. (2) is

By(t) = e ieot/Mny@WIN" A ()B,(0),  (3)
where
t
Y =4 f E() dt, 4
i Jo

is the dimensionless area associated with E(t), and

— i dx . . 8_[7 ipx
An(t) = f_ﬂ oy exp[zmx zpéo - Bp()e'™ ¢,
(5)

where 8,(t) = [ e ??") dt'. This result was earlier re-
ported by Zhu, Zhao, and Niu [16]; it holds for arbitrary
band dispersion beyond the NNTB approximation.
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An electron is considered to be dynamically localized
in a field of period 7 if it returns to its original state
at times t = 7,27,37,.... From Eq. (3), this can occur
only if A,,(7) = 8,,0. Using this, multiplying Eq. (5) by
exp(—imx'), and summing over m on both sides, we ob-
tain the condition €,8,(7) = 0. For this to be true for
any band structure, we must have 3,(7) = 0. Thus, EDL
occurs only if B,(r) = 0 for all p # 0.

Because B, (7) is the key to EDL, we now examine the
related dimensionless quantity

$,= Bpn)fr = [ e Oa
T Jo

We consider purely ac fields without a dc component, so
that y(0) = y(7) = 0. The most studied ac field in DL
is sinusoidal: E(f) = E; sin(wt), where @ = 27 /7. For
this field, we find S, = Jo(pQ/w), where ) = edE; /.
For EDL to occur, this must vanish for all p, which is
not possible for any () /w. For a NNTB band structure,
however, only S1 = 0 is required, which reduces to the
usual condition for dynamic localization in a sinusoidal
field [11]. Thus, a sinusoidal field yields only DL in the
NNTB approximation [14,15].

Until now, the only purely ac field known to exhibit EDL
is the square wave which alternates between *=FE,, where
E, = 4mhn/(edt) [16,17] and n is a positive integer;
indeed, for this field S, = 0 for all p > 0. This can
be simply understood: The field is constant over time
intervals during which n complete dc BO occur. At the end
of each interval, the electron returns exactly to its initial
state, and thus remains localized. Therefore, although a
number of different fields have been reported for which
DL or EDL occur [11-16,18], the general requirements of
electric fields that lead to EDL have not been examined;
this is the question that we address here.

Though the infinite set of conditions, S, = 0, required
for EDL are straightforward to evaluate for a given field,
they are ill-suited to the inverse problem of constructing
fields for which EDL occurs. To this end, we define

fo =3 s,

p=—®
and Sop = 1. Thus, if S, = 0 for p # 0, then f(x) = 1
for —7 < x < 7. Inserting (6) for S, we obtain

flx) = 2777];)7 Z 8[x — y(t) — 2mm]dr. (8)

m=—o0

where —7m < x <7, (1)

We restrict ourselves for now to fields for which y(r) #
0. This is equivalent to requiring that E(z) # O for all
times, and therefore limits us to electric fields that are
discontinuous when crossing the horizontal axis. As we
show below, this is in fact the only type of field for which
EDL occurs. With this condition on y(f), we may write

70 =223 1l ©
m,j
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where the ¢, follow from y(¢;,,) = x — 27m, where 0 <
tjm < 7. According to Eq. (9), electric fields that yield
EDL can be identified as follows. (i) Consider the func-
tions I',,(¢) = y(¢) + 27rm, with m an integer. (ii) For
each x, solve I',,(r) = x for 0 < ¢t < 7. (iii) For each
solution, determine 1/|y(#)|. (iv) For each x, add these
values for all solutions. (v) If this sum is independent of
x, then the field associated with y(z) leads to EDL.

It is easy to see that Eq. (9) can be satisfied by a square
wave. Then v is triangular, and so the slope at all intersec-
tions has the same magnitude. The only remaining require-
ment is then that the same number of intersections occur
for every x. This is guaranteed for y’s with a peak-to-peak
amplitude of 277,47,.... More general square-wave-type
solutions can easily be constructed: We require x = (1)
to be a piecewise linear function, with y # 0 at all times,
and with slope changes only when x is an integer multiple
of 27r. This is a simple extension of the dc BO discussed
earlier: An integer number of BO occurs in each segment.

Returning to general ac fields, we now show that EDL
cannot occur if y(¢) = 0 at any time. Consider a continu-
ous function, y(r), which, since it is also periodic, has at
least one minimum and one maximum per period. At the
extremum (or inflection point) at, say, ¢ = #y, y(f) can
be Taylor expanded as y(t) = y(t) + B(t — t5)*' +

.., where B is a constant, and ¢ is a positive integer.
Now for x near y(z), the integral in Eq. (8) diverges as
[x — y(t0)]79/4*V. Since f(x) evidently becomes arbi-
trarily large near each extremum, and is finite elsewhere,
it is not constant. EDL thus does not occur when vy
has minima or maxima, i.e., for fields that cross the hori-
zontal axis: EDL does not occur for continuous ac elec-
tric fields. We refer to discontinuities that occur when the
field changes sign as essential discontinuities. We can
place limits on these essential discontinuities as follows.
Consider an ac field and denote the minimum value of
|E| by Eo. Then |dy/dt| = edEy/h, and so Y |y;|™! =
hi/edEy. Thus, from (9), and since f(x) = 1, we find
7 = 27h/edEy. Similarly, it follows that if an ac field
has an essential discontinuity of magnitude AE, then 7 =
8mh/edAE. Thus, one can only reduce the magnitude of
the essential discontinuities by allowing a long ac period.

Having established some general properties of ac fields
that yield EDL, we now show how to construct the most
important type: those with only essential discontinuities
and no others. Note first that, if an essential disconti-
nuity occurs when y(#) # 27rn (with n an integer), this
requires at least one nonessential discontinuity to occur.
Thus, we consider only fields with essential discontinu-
ities when y(¢) = 27rn. Now condition (9) is more easily
implemented as a function of x, in terms of which, how-
ever, y is multivalued. We therefore write it as a sum of
invertible segments, denoting times where y(¢f) = 27n by
t;. We divide y into N segments, such that y(¢) = v;(¢)
fortj—; <t <t;,wherei = 1,...,N. For each segment,
vi(t) # 0 and is continuous, and, hence, each 7y;(z) is
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invertible. Defining 7y;(¢;) = 27m;, then by construc-
tion my = my = Oand m; = m;—; * 1. We define g;(x)
to be the inverse of ;(¢) and rewrite (9) to make the
right-hand side an explicit function of x. We then obtain

0 = S Jglr =2l (10)

We first consider two-segment functions (N = 2) with
to =0,t, = 7/2, 1, = 7, and y(t;) = 27. We write the
inverses as gi(x) = 7x/47 + h(x) and gy(x) = 7(1 —
x/4m) + h(x), where h(x) satisfies h(0) = h(27) = 0
and |A'(x)] < 7/(47), but is otherwise arbitrary. The
last condition ensures that y;(¢) is single valued, so the
electric field is finite. When h(x) = 0, we recover the
square-wave field described earlier. For h(x) # 0, we ob-
tain from Eq. (10)

(11)

=27
.
Since |h'(x)| < 7/(47), we see that f(x) = 1 for any
h(x), as required for EDL. To present a simple, con-
crete example, we take h(x) = a(x?> — 27x), with |a| <
7/(87%) so that |h'(x)| < 7/(47). After inversion and
differentiating with respect to ¢, we then find the follow-
ing for the electric field:

T

dar

+ h'(x)

-
+ =+ n
’ 47 ()

E(t) = %(z2 +4an)”V2 0<t<71/2, (12)
where Z = 7/(4w) — 2ma, and E(t + 7/2) = —E(1).
This field is shown in Fig. 2(a). Note that this procedure
leads to an infinite number of solutions even for N = 2,
but that very few of these can be inverted in closed form.

By using more than 2 segments, the procedure can be
extended to construct many more general fields that yield
EDL. Without any loss of generality, we let g;(x) =
bix + a; + h;(x), where b;x + a; is the straight line be-
tween (t;—y,27m;—;) and (t;,27m;), and the h;(x) are ar-
bitrary functions such that h;27m;—1) = h;2mm;) = 0
and |hj(x) + b;| > 0. Inserting g;(x) into (10) we obtain

N
700 = 25X by 4w = 2wl (13)
i=1

where M; = min[m;_;,m;]. Using the inequality on the

derivatives, one can show that f(x) = 1 iff
N,
i=1 |b i |
Thus N — 1 functions #;(x) can be chosen freely, while
the remaining function must be chosen to satisfy Eq. (14),
the only requirement being that the field does not diverge.
Equation (14) is one of the central results of this work in
that it gives the conditions required of any field that is to
yield EDL. Though all such fields lead to EDL, they gen-
erally are discontinuous at all ¢;. However, the h; can be
chosen such that all nonessential discontinuities disappear,
and, in fact, the field can be made arbitrarily smooth at all

|hi(x — 27 M;)| = 0. (14)
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other #;. By construction, then, all fields thus obtained have
an area between discontinuities that is an integer multiple
of 2777 /ed. Thus, we obtain an area condition: Electric
fields that have only essential discontinuities must have
an area between adjacent discontinuities that is an integer
multiple of 277/i/ed if they are to yield EDL; this condi-
tion on its own is necessary but not sufficient, as Eq. (14)
must also be satisfied.

We now provide numerical examples to illustrate the
theory and to examine the validity of the one-band ap-
proximation for a realistic structure. We consider a GaAs/
Ga,Al;—,As superlattice with d = 10 nm, well and bar-
rier widths of 8.5 and 1.5 nm, respectively, a well depth
of V = 400 meV, and an electron effective mass of 0.067
that of the free electron mass. These parameters corre-
spond to those of typical systems that have been experi-
mentally investigated [3,4]. We take the ac period to be
T = 825 fs, which is well within the range of experimen-
tally achievable periods for THz fields [9,19]. We solve
the time-dependent Schrédinger equation via the split-step
Fourier method, including all bands but no dephasing. We
take the electron to be initially in the maximally localized
Wannier function of the lowest miniband localized about
z=0.

In Fig. 1 we show the electron probability density versus
position as a function of time for a sinusoidal ac electric
field with the amplitude that yields DL in the NNTB limit.
The localization is now essentially gone after two periods,
even though the ratio |e/&1| is only 0.0938. Thus, even
close to the NNTB regime, it is clearly not sufficient to
treat DL in the NNTB limit. Figure 2(b) is similar to
Fig. 1, but is for the field in Eq. (12), with a/7 = —0.01
[see Fig. 2(a)]. The electron density is essentially periodic
for times much longer than for the sinusoidal field; the
irregularity appearing by the fifth period is due, in fact, to
transitions to higher minibands. We deliberately chose the
large magnitude of a to emphasize the difference with the
square wave (the instantaneous field reaches values almost

FIG. 1. Electron probability density (log scale) versus time for
a sinusoidal electric field with the minimum amplitude that leads
to DL in the NNTB approximation.
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FIG. 2. (a) The electric field of Eq. (12) as a function of time

for a/T = —0.01. (b) The electron probability density (log
scale) versus time for the electric field in (a).

5 times that of the square wave with the same period), and
to test the theory when coupling to higher bands might
not be negligible. Thus, the coupling, while noticeable,
does not destroy the effect over times that are much larger
than the coherence times (~1 ps) of typical semiconduc-
tor superlattice structures [4]. Note that for smoother,
lower-intensity fields, or for structures with more widely
separated minibands, the tunneling to higher bands is
significantly reduced.

The finding that only discontinuous fields lead to EDL,
an important conclusion of this work, would seem to be
a considerable challenge for the design of experiments.
However, numerical experiments, not shown here, indicate
negligible changes in the electron density when using fi-
nite up- and down-switching speeds that are up to 6% of
the total ac period; thus genuinely discontinuous fields are
not required for localization for t < 67. Such quasidiscon-
tinuous fields generally yield much better DL than a sine
wave. Moreover, in optical systems consisting of arrays of
coupled waveguides [7,17] the time variable in electronic
systems maps onto a spatial variable in the propagation di-
rection, and the dynamics then takes the form of a dc light
beam snaking back and forth in space upon propagation.
Because the “ac field” in these arrays can be generated via a
spatially varying waveguide curvature [17], “ac fields” that
are essentially discontinuous can be constructed in these
systems.

046806-4

In conclusion, we have shown that exact dynamic local-
ization occurs only in ac fields that are discontinuous when
changing sign; we have derived an area condition for such
fields; and we have demonstrated how to construct such
fields. This puts earlier results, obtained in somewhat of
an ad hoc fashion, into a systematic framework. Our re-
sults are well born out by simulations.
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