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The energy spectra and quantum diffusion of an electron in a 1D incommensurate Frenkel-Kontorova
model are studied numerically. We found that the spectral and dynamical properties of an electron display
quite different behaviors in the invariance circle regime and in the Cantorus regime. In the former case,
it is similar to that of the Harper model, whereas in the latter case, it is similar to that of the Fibonacci
model. The relationship between spectral and transport properties is discussed.
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The Frenkel-Kontorova (FK) model describes a one-
dimensional chain of atoms/particles with harmonic
nearest-neighbor interaction placed in a periodic potential.
It is a widely used model in condensed matter physics and
nonlinear dynamics [1]. For instance, it has been used
to model crystal dislocations [2], epitaxial monolayers
on the crystal surface [3], ionic conductors and glassy
materials [4], an electron in a quasi-1D metal below the
Peierls transition [5], charge density waves [6], Josephson
junctions chains [7], and dry friction [8]. More recently,
this model has been employed to study transport properties
of vortices in easy flow channels [9] and strain-mediated
interaction of vacancy lines in a pseudomorphic adsorbate
system [10]. Because of the competition between the
two length scales, the spring length and the period of the
on-site potential, the FK model exhibits a wealth of inter-
esting and complex phenomena (see [11] and the refer-
ences therein).

One of the most striking features of the FK model is
the so-called transition by breaking of analyticity. It is
shown by Aubry [12] that there exist two different ground
state configurations for an incommensurate chain. The
transition from one configuration to another occurs when
one changes the coupling constant K [see Eq. (2)]. These
two incommensurate configurations correspond to invari-
ance circle and Cantorus of the standard map [13], respec-
tively. This transition is still discernible in a quantum FK
model [14].

Although extensive studies have been done since its in-
troduction, the FK model continues to attract active inter-
est from different fields. Recent studies are concentrated
on phonon modes, because they are responsible for the
heat conduction along the chain [15,16]. It is found that
the on-site potential breaks the conservation of momentum
and makes the heat conduction in the 1D FK model obey
the Fourier law [16].

However, the electronic property of the 1D FK model is
still unknown up to now. This topic is important from both
fundamental and application points of view, because in-
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commensurate and quasiperiodic structures appear in many
physical systems such as quasicrystals, two-dimensional
electron systems, magnetic superlattices, charge-density
waves, organic conductors, and various atomic monolayers
absorbed on crystalline substrates. As mentioned before,
the FK model has been very successful applied in these
systems. It is the purpose of this Letter to study this topic.

The electron in a 1D FK chain obeys the equation

t0�cn11 1 cn21� 1 Vncn � Ecn , (1)

where t0 is a nearest-neighbor hopping integral which is
set to 1 in this Letter, cn is the amplitude of wave function
at the nth site, and E is the eigenenergy of electron. The
on-site potential, Vn � l cos�x0

n�, is controlled by parame-
ters l and x0

n. �x0
n� is the configuration of an incommensu-

rate ground state of the FK model; namely, �x0
n� minimizes

the functional

U �
X
n

1
2

�xn11 2 xn 2 a�2 1 K�1 2 cos�xn�� , (2)

where K is a coupling constant and a is the equilibrium
distance between consecutive atoms. �x0

n� is determined
by an adjustable coupling constant K.

In contrast to the Harper model and the Fibonacci model
that have been often used to study an electron in incom-
mensurate systems (see review articles [17,18], Ref. [19],
and the references therein), the FK model has two control
parameters, l and K, and is thus more general.

Any change in l and K will alter on-site potential Vn

and thus change the electron properties of the system.
It is well known that for each irrational number a�2p

there exists a critical value Kc separating the two con-
figurations of ground state. Kc � 0.971 635 4 . . . corre-
sponds to the most irrational number, golden mean value
a�2p � �

p
5 2 1��2. In this Letter, we restrict ourselves

to this particular value in numerical calculations as it is the
most used one in the community.

In order to study electron energy spectra, we first ob-
tain ground state configuration for N atoms by the gradient
© 2002 The American Physical Society 046804-1
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method [12] for fixed boundaries, i.e., x0 � 0 and xN �
2pN . a�2p � �

p
5 2 1��2 is approximated by a conver-

gent series of truncated fraction: Fn�Fn11 �n � 1, 2, . . .�,
where �Fn� is a Fibonacci sequence. The number of atoms
is chosen as N � Fn. The electron eigenenergies are ob-
tained numerically by the transfer matrix method. The
transfer matrix TN �E� is

TN �E� �
NY

n�0
T�n, E� , (3)

where

T�n, E� �

µ
E 2 l cos�x0

n� 21
1 0

∂
. (4)

The allowed energies of an electron satisfy the condition
jTrTN �E�j # 2. Figure 1 illustrates the spectra as func-
tions of l for different values of K. From Fig. 1, we can
see that for K # Kc, the energy spectrum (see Fig. 1a)
is similar to that of the Harper model, namely, the band
splits into subbands as l is increased from 0. As l be-
comes larger than a critical value, energy levels tend to
repel each other. There are, however, differences from the
Harper model. For instance, the Harper model has a good
symmetry, such as self-duality, and the spectrum is sym-
metric about E � 0. All eigenstates are extended when
l , lc�� 2�, and localized when l . lc. Our model
does not have self-duality and the spectrum is asymmet-
ric. It is known [17] that for a non-self-duality system,

FIG. 1. Energy spectra versus l for an electron in the FK
chains with different values of K . (a) K � 0.4 , Kc; (b) K �
1.6 . Kc. The chain length is N � 377.
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there exists a critical parameter above that all eigenstates
are localized. Below this critical value, extended, critical,
localized states, and mobility edges coexist.

To study the eigenstates quantitatively, the Thouless ex-
ponent �g�Ei�� and participation ratios (PR) are calculated
for every eigenstate. The Thouless exponent is given by

g�Ei� �
Z

lnjEi 2 Ejjr�Ej� dEj �
1
N

X
jfii

lnjEi 2 Ejj ,

(5)

where r�E� is the density of states, and the participation
ratio is

PR �
�
P

n c2
n�2

N
P

n c4
n

. (6)

The Thouless exponent is proportional to the inverse of the
localization length, i.e., g 	 1�j. If g is about the order
of 1�N for a finite chain of length N , then the eigenstates
are extended or critical. Otherwise the eigenstates are lo-
calized. In Fig. 2, we plot g as a function of eigenstate
for different l. Figure 2a is for K � 0.4. It tells us that
for small l, all states are extended and critical (correspond
to small g in Fig. 2a). As l is increased, some eigen-
states become localized. For l . lc all eigenstates are
localized. Of course, lc depends on K [5]. The minimum
Thouless exponent gmin and maximum PR are calculated

FIG. 2. The Thouless exponent g�E� for different values of
K . (a) K � 0.4, curves 1, 2, and 3 correspond to l � 1.0,
2.3, and 3.0, respectively; (b) K � 1.6, curves 1, 2, and 3
correspond to l � 1.0, 2.0, and 3.5, respectively. The chain
length is N � 4181.
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as a function of l so as to find the critical value of lc

for a fixed K. In Fig. 3, we plot gmin and PRmax versus l

for K � 0.4, 0.6, Kc, and 1.6. From these curves, we can
easily obtain critical values lc 
 2.3, 2.46, and 2.96 for
K � 0.4, 0.6, and Kc, respectively.

In the case of K . Kc, i.e., the ground state configu-
ration of atoms corresponds to Cantorus, both spectra and
eigenstates are quite different from that case of K # Kc

(see Fig. 2b). In this case, no critical value has been found
[see curve 4 and curve 2 in Figs. (3a) and (3b), respec-
tively]. All eigenstates are critical. This is similar to
that case of quasiperiodic systems such as the Fibonacci
chain [19].

To investigate quantum dynamical behaviors, the time
evolution of a wave packet in the system described by
Eq. (1) is calculated numerically. The wave packet is local-
ized initially at the center of the chain. The time evolution
is described by a time-dependent Schrödinger equation

i
dcn

dt
� cn11 1 cn21 1 l cos�x0

n�cn . (7)

The variance of the wave packet is

s2�t� �
NX

n�1
�n 2 n̄�2jcn�t�j2. (8)

FIG. 3. The minimum Thouless exponent gmin (a) and the
maximum participation ratio PRmax (b) as functions of l for
an electron in the FK chains with different parameter K . Curves
1, 2, 3, and 4 in (a) correspond to K � 0.4, 0.6, Kc , and 1.6.
Curves 1 and 2 in (b) correspond to K � 0.4 and 1.6. The
results of gmin and PRmax are obtained for finite FK chains of
length N � 4181 and N � 1597, respectively.
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It can be calculated numerically by integrating the
Schrödinger Eq. (7) for a chain of length N with
fixed boundaries c0 � cN11 � 0. In our calculations,
the fourth-order Runge-Kutta method with time step
dt � 0.01 was used. The equilibrium ground state
positions of N atoms in the FK chain are obtained by the
gradient method with the same boundary conditions. The
dynamical exponent is defined by s2 	 t2D.

In Fig. 4, we plot s2�t� for several values of l. Fig-
ures 4a and 4b correspond to K � 0.4 and 1.6, respec-
tively. For K , Kc, the time evolution of an electron is
also similar to that of the Harper model; that is, s2 	 t2

and t0 for l , lc �l � 1.0, 2.2� and l . lc �l � 2.4�,
respectively. The unbounded diffusion in the regime of
l , lc is caused by the existence of extended and critical
states as discussed above. However, at l � lc, the system
displays anomalous diffusion behaviors, and the dynamical
exponent depends on K, and D 
 1�4 for K � 0.4 (see
Fig. 4a). It will be of great interest to connect the exponent
of anomalous diffusion with the multifractal dimension of
critical eigenstates. For K . Kc, the time behaviors of
wave packet are similar to that of quasiperiodic systems;
i.e., the dynamical exponent D depends on l.

Now we turn to level statistics of the system and its re-
lationship with the dynamical exponent. Geisel et al. [20]
observed that for a bounded uncountable set of levels, it

FIG. 4. The variance s2 of a wave packet for electrons in the
FK chains with different values of K . (a) K � 0.4, curves 1,
2, 3, 4, and 5 correspond to l � 1.0, 2.2, 2.3, 2.4, and 3.0,
respectively, and lc 
 2.3; (b) K � 1.6, curves 1, 2, 3, and 4
correspond to l � 1.0, 2.0, 3.0, and 3.5, respectively. The chain
length is N � 10 946.
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is possible to count the number of energy gaps larger than
s and to calculate the integrated level-spacing distribution
(ILSD) defined by pint�s� �

R`
s p�s0� ds0. The derivative

of the ILSD p�s� � 2dpint�ds gives the probability dis-
tribution of level spacings. In Fig. 5a we show the ILSD
at l � lc for K � 0.4 and 0.6. It can be seen that each
distribution consists of two parts: the exponential decay
part for small s and the power-law decay part for large s.
It is well known that the localization of eigenstates results
in the Poisson distribution in energy level spacing statis-
tics [21]. It is thus reasonable to attribute the exponential
decay to the localized states, and the power-law-like de-
cay to the critical states, as is the case in the Harper model
and the quasiperiodic model. Figure 5b shows the ILSD
for several values of l with K � 1.6. Each distribution is
very similar to that of the Harper model at lc and that of
quasiperiodic models. Unfortunately, the power-law-like
behavior of the ILDS is not very significant for large l

due to limited bin sizes.
The exponent b for level-spacing distribution defined

by p�s� 	 s2b can be obtained by the best fit power-law
part of ILSD curves. We find that the relation

D � 1 2 b (9)

for the Harper model at lc is also true for our model in the
regime of K , Kc, but not for the regime of K . Kc.

In summary, we have studied spectral and dynamical
properties of an electron in incommensurate FK chains.

FIG. 5. The integrated level-spacing distribution pint�s� for dif-
ferent values of K . (a) Curve 1 corresponds to K � 0.4 and
lc � 2.3. Curve 2 corresponds to K � 0.6 and lc � 2.46;
(b) K � 1.6, curves 1, 2, 3, and 4 correspond to l � 1.0, 2.0,
3.0, and 3.5, respectively. The chain length is N � 2584.
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The system shows a rich phenomenon. For K , Kc, i.e.,
the ground state configuration corresponds to invariance
circle, there exists a critical value lc above which all eigen-
states are localized. Below lc, extended, critical, and lo-
calized states coexist. The critical value lc and dynamical
exponent D at lc depend on K. The relation (9) holds for
the power-law part of the ILSD. On the other hand, for the
case of K . Kc, i.e., the ground state configuration corre-
sponds to Cantorus, all electron eigenstates are critical and
D depends on l.
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