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Anomalous Magneto-oscillations and Spin Precession
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A semiclassical analysis based on concepts developed in quantum chaos reveals that anomalous mag-
neto-oscillations in quasi-two-dimensional systems with spin-orbit interaction reflect the nonadiabatic
spin precession of a classical spin vector along the cyclotron orbits.
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If in a solid the spatial inversion symmetry is broken,
spin-orbit (SO) interaction gives rise to a finite spin split-
ting of the energy bands even at magnetic field B � 0.
In quasi-two-dimensional (quasi-2D) systems this B � 0
spin splitting is frequently analyzed by measuring the mag-
netoresistance oscillations at small magnetic fields B . 0,
known as Shubnikov– de Haas (SdH) oscillations. Follow-
ing a semiclassical argument due to Onsager [1] it has long
been assumed [2,3] that the frequencies fSdH

6 of these os-
cillations are proportional to the unequal occupations N6

of the spin-split subbands,

N6 � �e�2p h̄�fSdH
6 , (1)

where e is the electron charge and h̄ is Planck’s constant.
Recently, experiments and numerical quantum mechani-
cal calculations have shown that, in general, these oscil-
lations are not simply related to the B � 0 spin-subband
densities [4]. However, it has remained unclear when and
why Onsager’s semiclassical argument fails. Here we use a
semiclassical trace formula for particles with spin, which
was only lately developed [5,6] in the context of quan-
tum chaos, in order to show that the anomalous magneto-
oscillations reflect the nonadiabatic spin precession along
the cyclotron orbits. Currently great efforts are made to
obtain a deeper understanding of spin-related phenomena
in semiconductor quantum structures, in particular due to
possible applications in spintronics [7]. While spin is a
purely quantum mechanical property with no immediate
analog in classical physics, the present analysis reveals that
our understanding of spin phenomena can be greatly im-
proved by investigating equations of motion for a classical
spin vector.

In the presence of a magnetic field perpendicular to the
plane of a 2D electron system the electrons condense in
highly degenerate Landau levels that are regularly spaced
in energy. With increasing field B these Landau levels
are pushed through the Fermi surface causing magneto-
oscillations which reflect the oscillating density of states
(DOS) at the Fermi energy EF ; see, e.g., [8]. Onsager’s
semiclassical analysis of magneto-oscillations was based
on a Bohr-Sommerfeld quantization of cyclotron orbits.
However, for systems with spin there is no straightforward
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generalization of Bohr-Sommerfeld quantization [9,10].
The Gutzwiller trace formula [11] provides an alternative
and particularly transparent semiclassical interpretation of
magneto-oscillations that is applicable even in the presence
of SO interaction. Rather than giving individual quantum
energies, the trace formula relates the DOS of the quantum
mechanical system to a sum over all periodic orbits of the
corresponding classical system. As a function of energy E
the individual terms oscillate proportional to cos�S�E��h̄�,
where S�E� is the action of the orbit.

We briefly discuss magneto-oscillations of electrons
with effective mass m� in a 2D system without SO
interaction. Here, the sum over k-fold repetitions of the
classical periodic cyclotron orbits corresponds to a Fourier
decomposition of the DOS as a function of the energy
E, where the action of the k-fold revolution corresponds
to the kth harmonic 2pkE�h̄v � 2pkm�E�h̄eB of the
DOS with cyclotron frequency v � eB�m�. Thus we
see that the DOS for a fixed energy E � EF oscillates
as a function of the reciprocal magnetic field 1�B which
is the origin of magneto-oscillations. In particular, we
get Onsager’s formula from the first harmonic k � 1.
Longer orbits k . 1, giving rise to higher harmonics in
the oscillating DOS, are exponentially damped for small
but nonzero temperatures [12] so that here it suffices to
consider k � 1. In general, the Gutzwiller trace formula
is an asymptotic relation that holds in the semiclassical
limit h̄ ! 0. However, in the particular case discussed
above, it is an identity.

Recently it has been shown [5,6] that in leading semi-
classical order the SO interaction results in weight factors
2 cos�ka�2� for the orbits in the trace formula, where the
angle a characterizes the spin precession �s � s 3 BBB of a
classical spin vector s along the classical orbit [13]. Here
�s is the time derivative of s, and BBB is an effective mag-
netic field including the contributions of both SO coupling
and the Zeeman interaction due to the external magnetic
field B felt by the spin along the orbit. After k periods
of the cyclotron motion the spin vector s has been rotated
by the angle ka about an axis n; see Fig. 1. We remark
that the axis n (but not a) depends on the starting point of
the cyclotron orbit. Like the effective field BBB , the angle a
© 2002 The American Physical Society 046401-1
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FIG. 1 (color). Classical spin precession (bold green line)
about the effective field BBB (bold red line) along a cyclotron
orbit (black) for a GaAs QW. The thin lines represent the
momentary vectors of the effective field BBB (red) and the spin
s (green) along the cyclotron orbit. The momentary vectors
for BBB are normalized with respect to the maximum of jBBBj
along the orbit. In the starting point we have chosen s kBBB .
After one cycle the motion of the spin vector can be identified
with a rotation by an angle a about an axis n, as shown in
the blowup on the left. Initial and final directions for the spin
vector s are marked in blue. The system is a 100-Å-wide
GaAs-Al0.5Ga0.5As QW grown in the crystallographic direction
[113] with 2D density N � 5 3 1011 cm22 in the presence
of an electric field E� � 100 kV�cm and a magnetic field
B � 0.05 T.

depends on the external field B. It contains a dynamic as
well as a geometric phase similar to Berry’s phase [14].
Apart from higher harmonics the oscillating part of the
DOS at the Fermi energy EF is proportional to

cos�a�2� cos�2pm�EF�h̄eB� . (2)

We have analyzed magneto-oscillations for quasi-2D
electron systems in semiconductors such as GaAs, where
we have two contributions to the SO coupling. The Dres-
selhaus term [15] reflects the bulk inversion asymmetry
of the zinc blende structure of GaAs. If the inversion
symmetry of the confining potential of the quasi-2D sys-
tem is broken, we get an additional SO coupling given
by the Rashba term [16]. While the Dresselhaus term is
fixed, the Rashba SO coupling can be tuned by apply-
ing an electric field E� perpendicular to the plane of the
quasi-2D system [3].

In Fig. 2 we compare the Fourier spectra of the mag-
neto-oscillations of the DOS calculated by means of a
diagonalization of the quantum mechanical Hamiltonian
with the spectra obtained from Eq. (2) based on an inte-
gration of the classical equations of motion for the pre-
cessing spin. We consider here a 2D electron system
in a 100-Å-wide GaAs-Al0.5Ga0.5As quantum well (QW)
grown in the crystallographic direction [113] with constant
total density N � N1 1 N2 � 5 3 1011 cm22 and with
varying E�. For comparison, the circles mark the peak po-
sitions which one would expect according to Eq. (1) for the
spin-subband densities N6 calculated quantum mechani-
cally at B � 0. The Fourier spectra are in strikingly good
agreement. On the other hand, the peak positions deviate
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FIG. 2. (a) Quantum mechanical and (b) semiclassical Fourier
spectra for different values of the electric field E� for a 2D
electron system in a 100-Å-wide GaAs-Al0.5Ga0.5As QW grown
in the crystallographic direction [113] with constant total den-
sity N � 5 3 1011 cm22. The open circles show the expected
Fourier transform peak positions �2p h̄�e�N6 according to the
calculated spin-subband densities N6 at B � 0.

substantially from the positions expected according to the
B � 0 spin splitting. In particular, the semiclassical analy-
sis based on Eq. (2) reproduces the central peak that is not
predicted by Eq. (1). The asymmetry in Fig. 2 with re-
spect to positive and negative values of E� reflects the low-
symmetry growth direction [113] (Ref. [4]).

An analysis of the classical spin precession along the
cyclotron orbit reveals the origin of anomalous magneto-
oscillations. The spin-split states at B � 0 correspond to
fixing the direction of spin parallel and antiparallel to the
effective field BBB �p� along the cyclotron orbit, where p is
the kinetic momentum. However, in general, the precess-
ing spin cannot adiabatically follow the momentary field
BBB �p�. This can be seen in Fig. 1, where we have plot-
ted the momentary field BBB�p� as well as the precessing
spin s along a cyclotron orbit. Both the direction and the
magnitude of BBB change along the orbit. In particular, the
Dresselhaus term reverses the direction of BBB when jBBBj

has a minimum. A spin vector that is no longer parallel
or antiparallel to BBB implies that the system is in a su-
perposition of states from both spin subbands so that the
magneto-oscillations are not directly related to the B � 0
spin splitting.

For the spin, in order to be able to follow the mo-
mentary field BBB �p� adiabatically, the orbital motion must
be slow compared to the motion of the precessing spin,
i.e., we must have B ø jBBB�p�j for all points p along
the cyclotron orbit. Therefore, it is the smallest value
Bmin � min jBBB�p�j along the cyclotron orbit which deter-
mines whether or not the spin evolves adiabatically. This
is illustrated in Fig. 1, where the parameters were chosen
such that initially the spin is parallel to the effective field
BBB . First s can follow BBB , but after a quarter period of the
cyclotron orbit the effective field B reaches its minimum
Bmin and s starts to “escape” from BBB . Subsequently, the
spin vector s is no longer parallel to BBB also in those regions
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where B becomes large again. We remark that adiabatic
spin precession does not imply a � 0 but only that the
rotation axis n is approximately parallel to the initial (and
final) direction of the effective field BBB .

For many years, anomalous magneto-oscillations have
been explained by means of magnetic breakdown [17,18].
Underlying this approach is a rather different semiclas-
sical picture where each spin-split subband is associated
with an energy surface with separate classical dynamics.
In our treatment, on the other hand, there is only one en-
ergy surface complemented by the dynamics of a classical
spin vector. It is the essential idea within the concept of
magnetic breakdown that in a sufficiently strong external
magnetic field B electrons can tunnel from a cyclotron or-
bit on the energy surface of one band to an orbit on the
energy surface of a neighboring band separated from the
first one by a small energy gap. For spin-split bands the
separation of these bands is proportional to the effective
field B , i.e., magnetic breakdown occurs most likely in
regions of a small effective field B . This approach im-
plies that the anomalous magneto-oscillations are essen-
tially determined by the breakdown regions only. (These
breakdown regions can be identified with mode conversion
points [9].) We want to emphasize that here our approach
differs fundamentally from these earlier models: In the
present ansatz spin continuously precesses along the cy-
clotron orbit, i.e., the angle a in Eq. (2) is affected by the
nonadiabatic motion of s in the regions of both small and
large B (see Fig. 1).

In the adiabatic regime B ø Bmin the angle a is given
by the integral of the modulus of the momentary field BBB

along the orbit plus a Berry phase [14],

a �
Z T

0
jBBBj dt 1 aB , (3)

where T � 2p�v is the period of the cyclotron motion.
In the limit of small external fields �B ! 0� the Berry
phase aB converges towards a constant, and the integrand
in Eq. (3) can be expanded with respect to a small Zeeman
term, jBBBj � B0 1 B1B, where the coefficients B0 and
B1 are T-periodic in time. Thus in the limit of small ex-
ternal fields we obtain a�B� � a0�B 1 a1 with constants
a0 and a1 independent of B. Inserting the last relation in
Eq. (2) we thus retrieve Eq. (1), i.e., only in the limit of
adiabatic spin precession magneto-oscillations are directly
related to the B � 0 spin splitting. By changing the crys-
tallographic growth direction of the QW, it is possible to
tune the value of Bmin. In particular, for a QW grown in
the crystallographic direction �110� the Dresselhaus term
vanishes for p parallel to the in-plane directions �001� and
�001�. Thus for a symmetric QW without Rashba SO cou-
pling we have jBBB�p�j � B for these values of p, which
implies that there is no adiabatic regime and one always
observes anomalous magneto-oscillations.
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For a system with Rashba SO coupling but no Dres-
selhaus term both the classical equations of motion for
the precessing spin and the quantum mechanical problem
can be solved analytically. Here the Gutzwiller trace for-
mula exactly reproduces the quantum mechanical density
of states for B . 0. For this system, the effective mag-
netic field BBB�p� along the cyclotron orbit has a constant
magnitude B , and for small external fields B ! 0 the ex-
act solution turns into the adiabatic solution so that we get
no anomalous magneto-oscillations, in agreement with an
earlier quantum mechanical analysis [4].

Finally, we note that the concepts developed here are
rather general and, in particular, are not restricted to
spin-1�2 systems. Indeed, an analogous semiclassical
analysis can be carried out for any system with (nearly)
degenerate subbands. These bands can be identified with a
single band with a SO coupling acting on an effective spin
degree of freedom similar to Lipari and Baldareschi’s treat-
ment [19] of the multiply degenerate valence band edge
in semiconductors with diamond or zinc blende structure.
In particular, we expect that our approach can be applied
to the interpretation of de Haas–van Alphen experiments
on ultrahigh-purity magnesium samples [20] that had
called into question the established concepts of magnetic
breakdown.
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