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Ordering of Atomic Monolayers on a (001) Cubic Crystal Surface
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The self-organization of a chemisorbed monolayer is studied as a two-dimensional ordering process
in the presence of surface stress. As proved previously for a single phase separation, a steady surface
state is yielded from the competition between the domain boundary energy and the surface stress elastic
energy. In the present Letter, the resulting patterns are shown to depend on the interplay between the
symmetries of both the internal layer order and the underlying crystal. For experimental relevance, our
study is focused on a (001) copper surface.
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The growth of a nanostructure onto solid surfaces pro-
vides us with promising technical perspectives for the elec-
tronic miniaturization as for the heterogeneous catalyzer
assembling. The monolayer self-organization (SO) on a
crystal surface is an efficient way to control the nano-
structure growth by constructing a template with regular
nanometer sizes and spacings. The matter which may be
deposed subsequently on this template is likely to organize
with the same patterns as the monolayer.

Recent analysis of chemisorbed monolayers on (001)
copper surfaces, via scanning tunneling microscopy
(STM) [1–3] and spot profile analyzing low-energy
electron diffraction [4] showed both a large panel of
morphologies and the means to control their formations.

The interplay between the long range elastic interaction
yielded by the underlying crystal surface stress and the
domain boundary energy has been well known to con-
trol the surface SO since the papers of Marchenko [5]
and Vanderbilt et al. [6,7]. While Refs. [5,6] address the
cases of the vicinal surfaces and the surface reconstruc-
tion, Ref. [7] was performed in the very general context
of a two-phase system with 1�r3 isotropic dipolar interac-
tions in two dimensions, and thus the latest study is now
used to get an insight into the chemisorbed monolayer SO.
Indeed, considering an assembly of surface domains in-
side which are fixed adatoms, the energy cost Fchem due
to the boundary, i.e., where the adatom environment is un-
favorable, is proportional to the total boundary length L,
i.e., Fchem � I 3 L. The constant I is the boundary en-
ergy per unit length. As for a given coverage, the total
domain perimeter L is minimum for a single compact do-
main; the smaller the number of compact domains, the
weaker the domain boundary energy. On the other hand, if
a non-negligible crystal surface stress L is associated with
the adatom adsorption, the surface stress inhomogeneities
induce some forces that are located at the domain bound-
aries. These forces yield a crystal strain, and thus an elastic
work is involved which is minimum when the forces are
separated by a distance as large as possible. So the surface
ground state structure should balance the interplay between
the boundary energy and the elastic work, and the calcula-
tions of [5–7] neatly proved that periodic domains occur
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with a period selection which increases exponentially with
the ratio I�L2, with a suitable multiplier which depends on
the material elastic constants.

In Ref. [8], the 2D Cahn-Hilliard (CH) theory was
proved to be an efficient tool for studying the SO kinetics
on a (001) cubic crystal surface provided the elastic
anisotropy due to the underlying crystal symmetries is
taken into account in the calculation of the total free
energy F. The 2D CH equation was assumed to drive the
surface diffusion of the adatoms; i.e., the time evolution
of the local adatom coverage u is given by

≠u�r, t�
≠t

� Mu �
dF

du�r, t�
. (1)

A complete analysis of this equation can be found in
Refs. [9,10] with no elastic interactions. The 2D CH
model was also proposed for phase separation in the binary
epilayer in Refs. [11] and for spinodal decomposition of a
crystal surface in Ref. [8,12].

The approach developed in Ref. [8] was actually de-
voted to a single phase separation on a crystal surface, no
matter how the internal layer order may play a role. In
what follows, we describe how to take into account the
symmetries of both the adatom monolayer and the under-
lying cubic crystal. These features are proved to determine
the patterning of the steady monolayer state. Comparison
with experiments is also proposed as an example of how
to interpret our results.

Some additional order parameters (OP), denoted hj with
j � 1, 2, . . . ,N , are required to describe ordered phases
that may coexist with either orientational or translational
variants. The number N of distinct OP’s depends on the
number of variants as described below for some examples.
The kinetics is thus completed by a set of N Allen-Cahn
equations:

≠hj�r, t�
≠t

� 2Mh

dF
dhj�r, t�

(2)

that control the time evolution of each nonconserved pa-
rameter hj . Such an approach was developed in metallur-
gical science by Khachaturyan [13] for the microstructure
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ordering in alloys. As we found no experimental results
about the ordering kinetics of the surface, Mh is an ad-
justable parameter which is assumed to fulfill the adia-
batic regime; i.e., the ordering kinetics is much faster than
the matter diffusion. The mobility constant Mu is pro-
portional to the Fick diffusion coefficient which is around
1026 cm2�s at 300 K (see [14]).

The total surface free energy F can be written as a
sum of two terms, i.e., first a chemical term Fchem which
includes both the energy due to covalent bonds substrate
adatoms and the subsequent entropy, and second a long
range elastic term Eel due to the crystal surface stress
which is imposed by the presence of adatoms. In the
framework of a continuous approach, both Fchem and Eel
may be expanded with respect to the coverage u, the hj’s,
and their respective surface gradients. Let us first write
Fchem as a Ginzburg-Landau functional:

Fchem � F0

ZZ
S

Ω
gu

2
�=su�2

1
gh

2

X
j

�=shj�2 1 f̂�u�
æ

dr . (3)

We introduce here the adimensional free energy density,

f̂ � Au2 1 E2�u1 2 u�
X

i

h2
i 2 E3h1h2

2 E4

X
i

h4
i 1 E5�h1h2�2 1 E6

X
i

h6
i , (4)

and the surface gradient =s � ��≠�≠x1�2 1 �≠�≠x2�2�,
where �x1, x2� are the surface coordinates along the (100)
and (010) directions of the (001) cubic crystal surface. The
F0 and gh , gu scalars are, respectively, the free energy
density constant and the amplitudes of the gradient term
that both are adjusted to set the model domain boundary
energy I to a realistic value, i.e., around 10 meV�Å (see
Refs. [6,15]).

As the OP are supposed to describe the different vari-
ants of the internal layer structure, it is required that any
symmetry operation relative to this structure should change
the hj’s leaving unchanged the f̂ quantity. For simplicity,
the polynomial f̂ expansion is truncated after the sixth OP
power, and we focus on a case with only two OP’s which
is sufficient to study basic structures such as C2X2 and
P2X1, well known from surface scientists [see Fig. 1 for
the case of a (001) fcc surface].

The C2X2 has two variants passing from one to the
other by a [1 1 0] surface vector translation. In our formal-
ism, this structure can be represented by two f̂ minima for
u � 1 and with either h1 � h2 � 1 or h1 � h2 � 21
depending on which variant is considered. The internal
order P2X1 correspond to two orientational variants since
the adatoms may arrange either along the direction [110] or
�110�, and for each orientation there are two translational
variants, passing from one to the other by a translation of
[2 0 0]. This structure may correspond to four f̂ minima at
u � 1 and with either h1 � 61 and h2 � 0 or h2 � 61
046102-2
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FIG. 1. On a (001) fcc crystal surface (atoms of which are
represented by full circles), the adatoms (empty circles) may
arrange in a perfect C2X2 order (on the left-hand side) or in
a P2X1 order (on the right-hand side). The direction �010� is
indicated.

and h1 � 0. As a result of the P2X1 symmetries, the cou-
pling coefficient E3 in Eq. (4) must be zero. Minimizing
the f̂ potential with respect to OP’s for a given u value
gives two kind of minima, i.e., one disordered surface for
which the whole set of OP is zero and some ordered sur-
faces for which the OP’s have nonzero values. The f̂ co-
efficients are adjusted such as plotting the f̂ potential after
minimizing with respect to the OP’s gives a double-well
potential with two minima at u � 0 and u � 1.

The Eel energy is calculated by inverting the mechanical
equilibrium equations, assuming a surface external force
distribution P which is due to the adsorption. At the sur-
face, we have

si,j�r, x3 � 0� ? nj � Pi�r� , (5)

where nj is a component of the surface normal n � �001�
and the summation over subscript j is implicit. The crys-
tal bulk stress, si,j�r, x3� is due to the crystal displace-
ments u�r, x3� and it is given by the Hooke law: si,j �
li,j,k,l≠uk�≠xl . The forth order tensor li,j,k,l gives the
crystal elastic constants and, for a cubic crystal symme-
try, this tensor is composed with three nonzero coefficients
[16], namely, li,i,i,i � C11, li,i,j,j � C12, and li,j,i,j �
li,j,j,i � C44. The bulk displacements fulfill the Lamé
equation:

li,j,k,l
≠2uk

≠xj≠xl
� 0 . (6)

Equations (5) and (6) are inverted by writing the displace-
ments as two-dimensional Fourier transforms of which the
Fourier components depend on both a surface wave vec-
tor Q � �q1, q2� and the deepness x3 inside the bulk. As
detailed in [8], it gives the surface elastic Green function
Gi,l�Q�. The crystal elastic energy is given by an analyti-
cal expression in the Fourier space:

Ecry � 21�2
Z

x3�0
P̃�

i �Gi,l�P̃l dQ , (7)

where P̃j is the Pj Fourier transform.
We now detail how the external force P is derived. Let

us denote s0 to be the surface stress imposed to the crys-
tal by the chemisorbed monolayer, i.e., s0 � 0 on the free
surface and s0 fi 0 in the adsorbate domains. Assuming
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that the monolayer is a perfect plan, the stress s0 is given
by a 2 3 2 tensor, and the induced force P is simply ob-
tained by deriving s0 with respect to the surface coordi-
nates, which gives

Pi �
X

l�1,2

≠s
0
il

≠xl
. (8)

The stress tensor s0 can be expanded with respect to the lo-
cal coverage u and the OP’s, i.e., h1 and h2. On one hand,
if no anisotropy appears in the layer structure, which is the
case for a disordered layer or when there is no orientational
variants, e.g., the C2X2, then we write s0�r� � s00u�r�,
where we introduce the constant tensor s00 which verifies
s

00
12 � s

00
12 � 0 and s

00
11 � s

00
22 � L. On the other hand,

if there are orientational variants, one must add a correc-
tion to s00u�r� and we propose to write

s0�r� � s00u�r� 1
X

j�1,2

s0jhj�r�2. (9)

This expansion holds when the OP’s correspond
one-to-one to the structure orientations, which is the
case for the P2X1 order. We focus on the P2X1 orien-
tational variant where first adatom neighbors are placed
along the [110] direction (Fig. 1). Let us denote L1 and
L1 to be the amplitudes of the stress along [110] and
�110�, respectively. We have jL1j . jL1j because of the
proximity of first adatom neighbors which reveals
the internal structure anisotropy. After performing a
suitable rotation, the stress tensor is written in the re-
pair �100� 3 �010� as follows: s

0
11 � s

0
22 � L and

s
0
12 � s

0
21 � m, where L � 0.5�L1 1 L1� and m �

0.5�L1 2 L1�. We now identify Eq. (9) for a perfect
P2X1 ordered domain with the suitable orientational
variant which gives the same expression s00 as for the
C2X2 phase but with nonzero off-diagonal coefficients
for the s01 tensor: s

01
12 � s

01
21 � m. The same can be

done with the other P2X1 orientational variant and it
gives s

02
12 � s

02
21 � 2m. As L1 and L1 are assumed

to have the same sign which means that a dilation (or
compression) occurs in both directions [110] and �110�, it
implies jmj , jLj.

For the chemisorbed compounds such as atomic nitro-
gen or oxygen, a 2D film with atomic thickness would
not be stable without first being adsorbed on a suitable
substrate. Therefore, there is no equilibrium state with re-
spect to which the monolayer strain field can be measured.
Consequently, the relevant parameter to develop the elastic
energy of the monolayer Elay is the stress s0 and, as Elay

is degenerate with respect to the sign of the stress, we have

Elay �
ZZ

S
bijkls

0
ij ? s

0
kl dr , (10)

where the constant tensor b is introduced to fix the intrin-
sic elastic properties of the atomic layer. The total elastic
energy of the surface is thus Eel � Ecry 1 Elay, but the
exact computation of Elay is rather difficult as we have
no estimation of b. Nevertheless, one notes that Elay is
simply a sum of the surface integral of the functions u2,
h

4
j , and uh

2
j , so its contribution to the total free energy is
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equivalent to a rescaling of the adimensional coefficients
of the free energy density f̂. From the experimental point
of view, the layer elastic energy can neither be measured
separately nor be neglected when measuring the growth
rate of an alone domain (at very low coverage) which pro-
vides an evaluation of the boundary energy I. Therefore
adjusting the model boundary energy I to a realistic value
as we did yet includes the contribution of Elay.

Let us restate the model parameters: I � 10 meV�Å,
L � 40 mJ�m2 �L � 0.25 eV�Å2�, and the elastic con-
stants of copper C11 � 1.683, C12 � 1.221, C44 � 0.757
which unit is 1011 J�m3 [17]. Equations (1) and (2) are
integrated with a finite space and time element method.
The kinetics starts from a uniform coverage u � u0 and
a uniform random distribution of OP’s between 21 and
1. The adimensional coefficients of the f̂ polynomial ex-
pansion are for the C2X2 structure A � 31, E2 � 124,
E3 � 29, E4 � 0, E5 � E6 � 155, c1 � 0.31, and for
the P2X1 structure A � 10, E2 � 40, E3 � 0, E4 � 21.3,
E5 � 57, E6 � 50, c1 � 0.35.

On a (001) cubic crystal surface, the ordering process
is shown to lead to a steady state with different meso-
scopic patterns according to the coverage and the internal
structure (see Fig. 2). Because of the crystal cubic sym-
metry and the monolayer internal structure, the final state
differs from the one predicted in Refs. [5–7]. Neverthe-
less, the space correlation function of the final state, i.e.,
�u�r 1 t �u�r�� exhibits a characteristic wavelength which
decreases exponentially with the boundary energy per unit
length I which confirms the predictions established in [5,6].

For a perfect C2X2 internal structure, no internal
anisotropy is induced. Only the symmetries of the
underlying crystal play a role in the patterning. At low

[010] →

FIG. 2. Phase separated final state on a (001) copper crystal
surface with L � 40 mJ�m2 (defined in the text) for a C2X2
(first row) at u0 � 0.25 (on the left), u0 � 0.5 (in the middle),
u0 � 0.75 (on the right-hand side), and for a P2X1 (second
row) with m � 0.9L at u0 � 0.38 (on the left), u0 � 0.5 (in
the middle), and u0 � 0.75 (on the right-hand side). The gray
scale enhances the different variants of the layer structures. The
direction �010� is indicated.
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coverage u0 � 0.25, the phase separation kinetics yields
a nanostructure of square-shaped islands arranged in raft
along either the [100] or the [010] directions that are the
elastic soft directions of the copper surface. The two
translational variants are identified with two different
shades of gray. Increasing coverage u0, the surface shows
a crossover going from square-shaped droplet structures
at low coverage to a labyrinthine structure for u0 . 0.5,
passing through mixed structures. The labyrinthine
structure occurs with two kinds of walls according to the
translational variants of the ordered phase. For u0 values
in the crossover range, the branched stripes coexist with
droplets (see Fig. 2 for u0 � 0.5). When coverage be-
comes large enough u0 . 0.65, the monolayer undergoes
another shape transformation which yields large compact
domains. For u0 � 0.75, the situation is not the counter-
part of a surface with u0 � 0.25 (see Fig. 2) as one would
expect from a simple phase separation. Some antiphase
boundaries (APB) due to the coexistence of different order
appear as trenches between the neighboring domains. The
present theoretical results about a (001) copper surface
with a C2X2 monolayer may be compared with what is
experimentally observed in [1,2] with the STM analysis
of the N�Cu(001) system. The atomic precision of the
STM enhanced adatom missing rows which our model
cannot capture because of the coarse graining. In the
experiments, those missing rows occur every 5.2 nm along
both [100] and [010] directions and thus the adatom layer
appears as an assembly of square-shaped islands with
5.2 nm size. According to Leibsle et al. [1], those missing
rows are due to the lattice parameter mismatch between
the bulk lattice constants of Cu3N and the (001) copper
surface unit cell. Nevertheless, if one considers the islands
separated by missing rows as a single domain, then the
final state patterns enhanced by the STM experiments are
very similar to the ones shown in the first row of Fig. 2,
for different coverage. Indeed, the C2X2 structure with
missing rows might be consider as a nonperfect C2X2
with no internal anisotropy as the perfect C2X2.

The P2X1 order implies a layer internal anisotropy, i.e.,
m fi 0. In the second row of Fig. 2, it is shown that the
patterns strongly differ from the C2X2 case. The domains
appear as tips, sides of which are oriented along specific
directions. The weaker is �1 2 m�L�, i.e., the stronger is
the internal anisotropy, the thinner are the tips, and their
sides tend to align with either [110] or �110�. The second
row of Fig. 2shows the different patterns according to the
coverage for m � 0.9L which is close to the m upper limit.
The tips with different variants do not branch to each other
because of the APB, and the growth of some domains may
be stopped by their neighbors with different orientations.

The anisotropy factor of a cubic crystal is given by the
combination of the elastic constants x � C11 2 C12 2

2C44 (see Ref. [16]). For example, copper and gold x’s
are negative �xCu � 21.0, xAu � 20.5�, and chromium
and niobium x’s are positive �xCr � 11.8, xNb � 10.5�.
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The case x , 0 as for copper is described above while,
for a positive x, the soft elastic directions of the crystal
surface are [110] and �110� instead of [100] and [010] for
a negative x. For x . 0, our calculations showed that
the internal anisotropy of a P2X1 layer does not modify
the preferential orientations of domains due to the crystal
symmetries. Only the shape of the domains is changed at
low coverage passing from square islands arranged in raft
along [110] and �110� when m � 0 to long tips aligned in
the same directions when m . 0. A C2X2 layer deposited
on a cubic crystal with x . 0 gives the same patterns as
a P2X1 layer with m � 0: The domain sides are aligned
with either [110] or �110� instead of [100] or [010].

In summary, it is proved that the patterning which is
yielded by the ordering of the atomic monolayer onto the
crystal surface is controlled by the symmetries of both the
internal layer structure and the underlying crystal. Our
results about the ordering of a C2X2 layer on a copper
surface are in good agreement with the experiments. The
method we used in the present paper is a promising tool to
study the surface nanostructures.
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