
VOLUME 88, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 28 JANUARY 2002

045502-
Small Isotope Effect of Diffusion in Disordered Structures

N. P. Lazarev* and A. S. Bakai
NSC Kharkov Institute of Physics and Technology, Akademichna 1, 61108 Kharkov, Ukraine

C. Abromeit and V. Naundorf
Hahn-Meitner-Institut Berlin, Glienicker Strasse 100, D-14109 Berlin, Germany

(Received 29 August 2001; published 9 January 2002)

The isotope effect E of a single jump vacancy diffusion mechanism in statically disordered lattices is
investigated by Monte Carlo simulation. It is found that E decreases significantly with increasing disor-
der. This effect is attributed to percolation processes and ensuing reduction of the effective dimension
of space for the diffusing particle.
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Isotope-effect measurements are an important touch-
stone used to identify a diffusion mechanism in crystalline
solids [1]. Such measurements are of major importance
also in exploring the mechanism of diffusion in amorphous
alloys which is still an intriguing question [2].

The isotope effect is expressed by the relation [3]

E � �DA� �DA 2 1���
p

mA�mA� 2 1� , (1)

where mA and mA� are the masses of the isotopes and DA

and DA� are their diffusion coefficients. These are given
by [4]

Dj � gfjWj , j � A, A�,

where g is the factor dependent on lattice geometry and
defect concentration, Wj are the jump rates, and fj are the
correlation factors of isotopes. According to the classical
theory of reaction rates the jump rates Wj are proportional
to 1�pmj [5]. In the absence of correlations of atomic
jumps �fj � 1�, the diffusion coefficients Dj simply co-
incide with gWj and the isotope effect is equal to 1. Such
a situation can occur for interstitial impurity diffusion in a
crystal by the direct jump mechanism.

It has been shown that the isotope effect Ecryst for
self-diffusion in crystals by a vacancy mechanism is pro-
portional to the tracer correlation factor ftr as Ecryst �
ftrDK, where DK is the fraction of the translational en-
ergy which is possessed by the solute atom as it crosses the
saddle point [6]. Since DK for the vacancy mechanism in
crystals is about unity [6] in this case the isotope effect is
close to the correlation factor ftr which ranges from 0.653
in simple cubic lattice to 0.782 in face-centered crystal [4].
Contrary to diffusion in crystals it was found that the iso-
tope effect, Eam, in amorphous solids is very small, for
instance Eam � 0.1 6 0.01 was reported for Co diffusion
in a CoFeNbB glass [7], Eam # 0.06 for Co diffusion in
a FeNiB glass [8], and Eam # 0.06 for Co diffusion in a
Co rich CoZr glass [9]. The similar behavior was obtained
for Co diffusion in the supercooled melt of bulk metallic
glass [10]. These results are usually explained by coopera-
tive motion of atoms [2]. Simple estimations show that
if an elementary act of atomic movement simultaneously
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involves n atoms, then the magnitude of the single jump
isotope effect E is reduced by a factor of 1�n [6,11]. How-
ever, the cooperative motion of atoms is not the only pos-
sible reason for a small isotope effect.

The aim of this Letter is to show that a low isotope effect
can be expected also for the ordinary single jump vacancy
mechanism in statically disordered lattices which serve as
models for the structure of amorphous alloys [12]. For this
purpose we restrict our investigation to the calculation of
the isotope effect based on a Monte Carlo (MC) simulation
of the atomic jump processes. A more detailed discussion
of various aspects of diffusion in disordered structures is
not attempted here and can be found, i.e., in [12,13], and
references therein.

We consider diffusion by means of vacancies in struc-
tures where atomic jump rates are different for various
diffusion paths. For the sake of simplicity we assume a
direct superposition of two models: Manning’s model of
diffusion in alloys [4] and a random lattice model with
randomly independent atomic jump rates [12]. This disor-
dered structure is characterized by the site coordinates �r�n,
where �n enumerates the sites, and by the effective poten-
tial relief with energy levels of the atoms in sites, Gs

�n, and
at the saddle points, Gb

�n �m, between sites �n and �m. Atoms
can jump only to a vacant neighboring site in their first co-
ordination sphere. Any site contains at the most one atom.
We assume that atomic jumps are thermally activated and
the jump rates W �n �m from site �n to a neighboring vacant
site �m have the Arrhenius form

W �n �m � Gj exp�2�Gb
�n �m 2 Gs

�n��kT�, j � A, A�. (2)

Here Gj are the jump attempt frequencies which are dif-
ferent for the atoms of types A and A�, and k and T are the
Boltzmann factor and the temperature, respectively. The
relation (2) implies that the probability of the atom jump
from the specified site depends only on the type of the
atom itself and does not depend on the other neighboring
atoms. We assume that magnitudes of the energy levels
Gb

�n �m and Gs
�n are independent random variables with defi-

nite distribution densities r�G�, which we take in the form
of a Gaussian distribution
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r�G� �
1

p
2p D

exp�2�G 2 G0�2�2D2� , (3)

where D is the variance of the distribution and G0 is the
mean. The site coordinates �r �n and potential relief do not
depend on time, i.e., it is assumed that the structure is static
or “frozen.”

The given definition of the diffusion problem contains
three inherently different types of disorders: compositional
�Gj�, energetic �Gb

�n �m, Gs
�n�, and dynamic (“blocking” ef-

fect). A discussion of how these affect the diffusion is
given by means of an analytical bond coherent potential
approximation in [14].

The main parameters of the model of a disordered
structure are as follows: (1) The type of the lattice: here
we consider face-centered-cubic (fcc), body-centered-
cubic (bcc), and simple cubic lattices (sc). (2) The ratio
GA� �GA of jump rates of the atoms of type A� and A:
this is related to the mass ratio of atoms A� and A as
�GA� �GA 2 1� � DK�

p
mA�mA� 2 1� [1,6]. (3) The dis-

persion of the site energies, ss � Ds�kT , and saddle
point energies, sb � Db�kT . We refer to the parameters
ss and sb as the values of random trap type disorder
(RT) and random barrier type disorder (RB), respectively,
according to conventional classification [12].

We calculate the random trajectories, �x�t�, of the atoms
and the vacancy as a function of time t by Monte Carlo
simulation. Details of this technique are described else-
where [15]. Time dependent diffusion coefficients, D�t�,
of the different species are derived from

D�t� �
1
6

≠

≠t
� �x2�t�� , (4)

where �· · ·� means ensemble averaging of trajectories.
Long time asymptotic of (4) at t ! ` gives the diffusion
coefficient D in usual meaning.

The calculations were performed in an elementary
box containing 105 to 106 atoms. Periodic boundary
conditions were used. Every atom in the box made
usually 104 to 106 jumps, and each run was repeated 2 to
30 times for different realizations of the energies Gs

�n and
Gb

�n �m. The overall number of atomic jumps was at least
109, and at some runs exceeded 1012, yielding typical
statistical errors for the diffusion coefficients of ,1% at
the most disordered system. Figures 1 and 2 show the
dependencies of long time diffusion coefficients, DA, of
A atoms and vacancies, DV , on the values of sb and ss in
an fcc lattice. These diffusion coefficients are normalized
to the vacancy diffusion coefficient, DV , at sb � ss � 0.
For comparison the corresponding dependence of the dif-
fusion coefficient of vacancies at small times, DV �t ! 0�,
is also given. These figures indicate that the correlation
factor, fcorr � D�t ! `��D�t ! 0� [12,13], decreases
rapidly with increasing disorder s. Since the total number
of atomic jumps in a MC simulation is limited at around
045502-2
FIG. 1. Diffusion as a function of RB disorder. The diffusion
coefficients are normalized to the long time diffusion coefficient
DV at s � 0.

1012 for practical reasons a small correlation factor poses
a limit also on the magnitude of disorder, sb or ss, to be
investigated in the present simulations in order to make
a statistically sound estimate. From Figs. 1 and 2 it is
noted that at large s the long range atomic diffusion coef-
ficients behave approximately as D�s� � exp�as�, with
ab 	 0.7 and as 	 20.7 for RB and RT, respectively.
On the other hand, the short range vacancy diffusion
coefficient is approximately DV �t ! 0� � exp�s2�2�.
Consequently, with increasing s the correlation factors
decrease rapidly as fcorr � exp�as 2 s2�2�. To have
every atom displaced on average by more than one inter-
atomic distance, it is therefore required that it makes more
than exp�s2�2 2 as� jumps. Moreover, the minimum
number of sites in the elementary box should be larger than
exp�s2�2�. Thus the total number of jumps in a MC simu-
lation is approximately exp�s2� � 1012 which limits the
values of achievable s to less than about 5. In the present
simulations sb # 5 for RB and ss # 4 for RT were
chosen.

FIG. 2. Diffusion as a function of RT disorder. The diffusion
coefficients are normalized in the same way as in Fig. 1.
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Using the long time asymptotics of the diffusion coef-
ficients of A and A� type tracers the isotope effect was
derived from the relation

Ẽ � �DA��DA 2 1���GA� �GA 2 1� , (5)

which according to Ẽ � E�DK is an upper limit to the true
value E of Eq. (1), since DK # 1. In order to calculate the
isotope effect with accuracy of better than 1021 the ratio
GA� �GA � 1.4 was chosen here in accordance with earlier
work [16]. Varying this ratio between 1.1 to 1.4 did not
change the overall picture.

The divergence of DA�s� and DV �s� with increasing
disorder seen in Figs. 1 and 2 indicates not only a corre-
spondingly decreasing correlation factor but at the same
time also a decreasing isotope effect. Figures 3 and 4
show the results of MC simulations of the isotope effect
Ẽ [cf. Eq. (5)] in different lattices. The isotope effect is
seen to decrease faster than linear with increasing dis-
order s, both for RB and RT disorders. The decrease
with RT disorder appears to be stronger than with RB
disorder. The isotope effect at fixed disorder is always
lower in lattices with the smaller coordination number but
curves for all lattices tend to converge for large s. For
RT disorder at ss � 4 the isotope effect of about 0.2 is
found.

The decrease of the isotope effect with increasing dis-
order can be discussed in terms of a percolation process.
By examining diffusion in a lattice with barrier disorder
we note that, while the magnitude of sb is growing, more
and more barriers become so high that some of the dif-
fusion paths are practically blocked forcing the long range
diffusing atoms to use paths of quick diffusion which obvi-
ously form a percolation network [17,18]. The topological
properties of percolation clusters are such that the num-
ber of the nearest neighboring sites available for diffusion,
i.e., belonging to this cluster, is strongly reduced at the
percolation threshold. The quick diffusion paths form a
complete tree structure with a large number of dead-end

FIG. 3. Isotope effect for RB disorder in various types of
lattices.
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branches. These do not contribute to long range diffu-
sion which proceeds only along the so-called backbone
[19] leading to a decrease of the effective dimensionality
of the diffusion paths compared with the dimensionality of
the lattice. The same reasoning as for the barrier disorder
applies also for the trap disorder, since in this case the deep
traps are not accessible by the vacancy and are therefore
practically blocked for the diffusing atoms. Consequently,
the evolution of a percolating network with increasing dis-
order and the related reduction of the effective dimension-
ality of the diffusion paths can be assumed to be the main
reason of isotope effect decrease in disordered structures.
Indeed, in the limit of one-dimensional diffusion via va-
cancy all atoms have identical diffusivities and the isotope
effect equals zero.

In order to demonstrate the role of percolation in isotope
effect reduction at vacancy diffusion in random structures
we investigate the behavior of the isotope effect in a lattice
containing sites of concentration Ctrap, which are consid-
ered inaccessible for vacancies, i.e., which are effectively
blocked and therefore are completely excluded out of the
diffusion process [13]. The distribution function r�Gs� of
energy levels is assumed to read

r�Gs� � �1 2 Ctrap�d�Gs 2 G0� 1 Ctrapd�Gs 2 Gtrap� ,
(6)

where G0 is the regular energy level in site, and Gtrap !

2` is the energy level in deep traps. Figure 5 shows the
isotope effect as a function of concentration of the in-
accessible sites. As is expected the isotope effect van-
ishes at the percolation threshold, pc, of the nontrapped
sites, 1 2 Ctrap � pc, where pc � 0.31, 0.25, 0.18 for
sc, bcc, and fcc lattices, respectively [19]. Diffusion with
a higher than 1 2 pc trap concentration can only occur
for finite values of �G0 2 Gtrap��kT , when atoms in deep
traps also contribute to diffusion and the second term on
the right-hand side of Eq. (6) matters. Because of prohibi-
tively long MC simulation times in this case only few data

FIG. 4. Isotope effect for RT disorder in various types of
lattices.
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FIG. 5. Isotope effect as function of concentration of deep
traps in different lattices.

points of a more surveying character were obtained. These
are also given in Fig. 5 and reproduce the expected behav-
ior for percolating systems [13].

In conclusion the present MC simulations of a single
jump vacancy mechanism on a random lattice indicate that
both the correlation factor and the isotope effect can be-
come very small, depending on the degree of structural
disorder. In particular for the random trap model with a
Gaussian distribution of site energies it was shown that a
negligible small isotope effect is observed if the dispersion
of energies reaches ss � 5. We suggest that the physical
reason for the low isotope effect is based on reducing the
effective dimension of the space for diffusion by site block-
ing. The result may be described as a percolation process.
In order to interpret in terms of MC simulation the iso-
tope effects obtained experimentally in amorphous alloys,
a detailed knowledge of the energy distribution of sites and
saddle points in these materials is necessary which, how-
ever, is presently not available. Only as an estimate the
dispersion of about 0.2 eV was deduced from measure-
ments of the internal friction in CuZr and FeB metallic
glasses [20]. According to the molecular dynamics simu-
lation of amorphous solids, the energy distribution is close
to Gaussian with variance of about 0.05–0.2 eV [21]. For
this the present results would predict an isotope effect near
zero at temperatures below about 500 K.

Finally we note that a heterogeneous structure, for in-
stance the polycluster model of the amorphous solid [22],
comprises low-dimensional diffusion paths so that in these
structures also small correlation factors and isotope effects
are expected. The stringlike atomic motions observed in
the recent molecular dynamics simulations both in glass
state [23,24] and in supercooled liquid state [25] confirm
further the significance of low-dimensionality for diffusion
in disordered media.
045502-4
We gratefully acknowledge discussions with F. Faupel,
M. P. Fateev, and M.-P. Macht.

*Electronic address: n.lazarev@kipt.kharkov.ua
[1] R. J. Borg and G. J. Dienes, An Introduction to Solid State

Diffusion (Academic Press, London, 1998).
[2] F. Faupel, Phys. Status Solidi (a) 134, 9 (1992).
[3] A. H. Shoen, Phys. Rev. Lett. 1, 138 (1958); K. Tharma-

lingam and A. B. Lidiard, Philos. Mag. 4, 899 (1959).
[4] J. R. Manning, Diffusion Kinetics for Atoms in Crystals (D

Van Nostrand, Princeton, 1968).
[5] H. Eyring, J. Chem. Phys. 3, 107 (1935); C. A. Wert, Phys.

Rev. 79, 601 (1950).
[6] J. G. Mullen, Phys. Rev. 121, 1649 (1961); A. D. LeClaire,

Philos. Mag. 14, 1271 (1966).
[7] F. Faupel, P. W. Hüppe, and K. Rätzke, Phys. Rev. Lett. 65,

1219 (1990).
[8] K. Rätzke et al., J. Phys. 7, 7663 (1995).
[9] A. Heesemann et al., Europhys. Lett. 29, 221 (1995).

[10] H. Ehmler, A. Heesemann, K. Rätzke, F. Faupel, and
U. Geyer, Phys. Rev. Lett. 80, 4919 (1998).

[11] G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957); S. A.
Rice, Phys. Rev. 112, 804 (1958).

[12] J. W. Haus and K. W. Kehr, Phys. Rep. 150, 263 (1987).
[13] J.-Ph. Bouchand and A. Georges, Phys. Rep. 195, 127

(1990).
[14] R. Brak and R. J. Elliott, J. Phys. Condens. Matter 1, 10 299

(1989).
[15] G. E. Murch, Diffusion in Crystalline Solids, edited by

G. E. Murch and A. S. Nowick (Academic Press, Orlando,
Florida, 1984).

[16] M. Kluge and H. R. Schober, Phys. Rev. E 62, 597 (2000);
H. R. Schober, Solid State Commun. 119, 73 (2001).

[17] S. Alexander, Phys. Rev. B 23, 2951 (1981).
[18] D. Ben-Avraham, Adv. Phys. 36, 695 (1987).
[19] D. Stauffer and A. Aharony, Introduction to Percolation

Theory (Taylor & Francis Ltd., London, 1991), 2nd ed.
[20] A. S. Argon and H. Y. Kuo, J. Non-Cryst. Solids 37, 241

(1980); D. Deng and A. S. Argon, Acta Metall. 34, 2025
(1986).

[21] See, for example, T. Egami, K. Maeda, and V. Vitek, Philos.
Mag. A 6, 883 (1980); S. Alexander, Phys. Rep. 65, 296
(1998).

[22] A. S. Bakai, Z. Phys. Chem. Neve Folge 158, 201 (1988);
A. S. Bakai, Glassy Metals, edited by H.-J. Güntherodt
and H. Beck (Springer, Heidelberg, 1994), Vol. III.

[23] W. Frank, A. Hörner, P. Scharwaechter, and H. Kronmüller,
Mat. Sci. Eng. A 179/180, 36 (1994); P. Scharwaechter,
W. Frank, and H. Kronmüller, Z. Metallkd. 87, 892 (1996).

[24] H. R. Schober, C. Oligschleger, and B. B. Laird, J. Non-
Cryst. Solids 156, 965 (1993); C. Oligschleger and H. R.
Schober, Phys. Rev. B 59, 811 (1999).

[25] W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C.
Glotzer, Phys. Rev. Lett. 79, 2827 (1997); C. Donati, J. F.
Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C.
Glotzer, Phys. Rev. Lett. 80, 2338 (1998).
045502-4


